PORT TOWNSEND GATEWAY
DEVELOPMENT PLAN

Prepared for
CITY OF PORT TOWNSEND
and the
WASHINGTON STATE DEPARTMENT OF TRANSPORTATION

Prepared by
STASTNY ARCHITECTS pc: Urban Design
MAYER/REED: Landscape Architecture
KITTELSON AND ASSOCIATES: Traffic & Transportation Planners
ARNOLD, ARNOLD AND ASSOCIATES: Civil Engineers

Preliminary Draft: December 5, 1990
Drafts: February 18, 1991
August 1, 1991
July 1993
Final Plan: August 1, 1991

STEERING COMMITTEE MEMBERS

CITY STAFF
Michael Hildt, Director, Planning and Building
Dave Robison, Project Manager
Kit Perkins, Staff Planner
Darlene Bloomfield, Administrative Assistant
Jan Zimmer, Planning and Building Assistant
Katherine Johnson, Planning and Building Assistant

FUNDING AND IN-KIND CONTRIBUTIONS
1. PLANNING FOR THE NEXT CENTURY

Port Townsend, Washington, has been a gateway to the future of the Pacific Northwest for more than one hundred years. Before statehood, when the Oregon Territory was still a wild and diverse land of mining, fur trapping, logging, fishing, and exploration, Port Townsend was the major seaport for commerce and settlers coming in and out of this vast edge of the country. When travel shifted from the sea to the land, with the development of roadways and trucks to carry cargo and private automobiles to transport people, the highway in and out of Port Townsend became the gateway leading away to the urban centers beyond, and the gateway leading into one of the loveliest Victorian seaport towns remaining anywhere in the world.

By 1987, with the development pressures from the greater Puget Sound area reaching out to touch the edges of Port Townsend's city limits from the highway entering from unincorporated Jefferson County to the bluffs overlooking the town and harbor below-Mayor Brent Shirley and the members of the City Council recognized the need to focus the town's attention on this important entrance to its historic downtown. These city leaders made plans for a city-wide participatory planning process, a design charrette, to discuss and decide what kind of gateway the citizens wanted for their town, and to consider how to implement those decisions. The Port Townsend Gateway Project had begun.

Mayor Shirley, recognizing the importance of including the broadest possible participation in the planning process, brought together a nine-member steering committee, including citizens and elected officials, to plan the design charrette focusing on the gateway to Port Townsend. The Steering Committee began regular discussion and planning sessions, meeting with City staff and a professional design workshop facilitator, to refine the goals for the design charrette and gather and organize information to be used at the planning session. A series of informational reports was prepared and assembled into packets for the participants. The Jefferson County-Port Townsend Leader published a series of stories, outlining the issues and encouraging citizens to begin the discussion process leading up to the design charrette. Students from Port Townsend High School organized a video project to document the gateway corridor, to interview citizens, and to record all public planning events up to the commencement of the design charrette. After several weeks of discussion, the Steering Committee established goals for the charrette and recommended a core group of thirty-three citizens, representing every facet of Port Townsend life, including: owners of businesses and property along the gateway corridor, realtors; developers; educators; Planning Commission and City Council members; design and arts professionals; other professions; contractors; recreation leaders; religious leaders; design and planning consultants; public officials; students; and citizens-at-large.

The Steering Committee developed a goal statement to focus and guide the process:

Through an intensive community workshop, develop a plan that graphically defines a consensus vision for the Sims Way Corridor area. This plan will form the basis for business development through regulatory improvement. The plan should identify the aspirations of the citizens of Port Townsend, indicate actions that are realistic and implementable, communicate ideas and solutions to be included in future plan documents, and provide a "sales tool" for the city in encouraging economic development.

Enthusiasm and interest grew steadily within the community as planning for the design charrette near completion.

On April 20, 1988, all citizens of Port Townsend were invited to a Town Hall Meeting, held at historic Fort Worden, to meet their representatives on the Core Group, to preview the video presentation which the high school students had prepared, to review the goals for the design charrette, and to provide public comment for consideration at the charrette sessions. The stage was set for the design charrette to commence.

The following two days and nights, April 21 and April 22, 1988, were marathon sessions of intensive, focused, highly-participatory design discussions, leading to a practical, concrete list of design priorities for the gateway corridor. Design charrettes are a rare opportunity to bring together the widest possible range of ideas, expertise, energy, and creativity, in a cooperative and constructive effort to find practical solutions to very real design challenges. Several design and planning professionals from other towns in the region offered their time to participate with Port Townsend's citizens. The result was a high-energy, very productive process which gave the City of Port Townsend a concept plan for future development of the gateway area, which would result in a welcoming, safe and attractive introduction to the town lying beyond. The seeds for a new future had been planted.

The planning area addressed in the charrette stretches along the Sims Way/SR20 corridor from the Port Townsend city limits to the Washington State Ferry Terminal. The gateway participants developed the plan on a twenty-foot-long map of the study area, with accompanying graphics. Also adopted was a far-reaching list of specific suggestions and an implementation plan for developing the gateway.

At the charrette conclusion, on the late afternoon of the second day, April 22, 1988, the charrette Core Group presented its ideas for the future of the gateway corridor to its fellow citizens.

The City Council meeting in the evening of May 11, 1988, was one of the most satisfying moments in recent Port Townsend history. The Core Group participants, along with other citizens observers, students. City staff members, and elected officials, came together in the City Council Chambers, overlooking the harbor where ships had brought in the hopes and dreams of the town's forefathers more than a hundred years before, to present the plan to the City Council. The room was filled with a sense of purpose, quiet excitement and resolve, and energy as the charrette participants presented their consensus plan.

After listening to support from a remarkably wide range of citizens during the hearing, the Port Townsend City Council passed Resolution 88-43, formally adopting the PORT TOWNSEND GATEWAY CONCEPT PLAN, a carefully-detailed set of priorities, with practical increments, for shaping the gateway corridor into the kind of place which would reflect the spirit and history and vision of the town to which it leads.

During the remaining months of 1988, and on into 1989, the Port Townsend City Council, Mayor, Planning Commission, and City staff members, working together with citizens, the Mainstreet Project, the Jeff Co. Economic Development Council, the Chamber of Commerce, the Board of Realtors, developers, contractors, and individual business owners, moved forward on the implementation of the Gateway Concept Plan. Three major new commercial projects in the Gateway Corridor sought out city officials to voluntarily comply with design guidelines for their projects. The first critical safety improvement—a crosswalk with a blind-person crossing sign—was established at a hazardous pedestrian crossing. After months of meetings with state officials, the speed limits along the Gateway Corridor were reduced to thirty miles per hour. The entrance sign at Port Townsend's city limits was restored and repainted. And the City purchased a high-priority parcel of greenbelt property adjacent to the entrance sign a step toward preserving the rural nature of the transition area between the county and the city. Dimensional drawings were prepared to delineate use of the Sims Way/SR 20 right-of-way and to set the stage for a detailed streetscape design.

During 1990, City staff and the Planning Commission conducted a complete review and draft revision of the City's sign code. The Planning
Commercial District. Until recently, this district was dominated by Port activities and the Kah-Tai Lagoon Park area. Recent commercial
limited and has been more of a "drive-through" area than a destination. The district defined by the "S" Curves and Bluff Corridors is the "Flats"
Gateway Charrette. This area has traditionally provided service commercial facilities for the residents of Port Townsend. Its use by tourists has been
locational significance as "uptown" and "downtown". Between the Forest and "S" Curves Corridors is the Upper Commercial District as identified in the
and could be developed as "commercial neighborhoods", each with its own special identity as a "place". The districts, over time, could have the same
Corridors and Districts
Port Townsend, "a city carved out of the wilderness," has evolved an urban form where primary building development occurs on available level
and steep geography is traversed only by roadways. This form is typical of the configuration along SR 20 (Sims Way) and has allowed areas of
strong "natural" environmental features to remain along Sims Way. These have been characterized as "corridors" in that they lead from district to
district, are linear in form, and are usually difficult development areas. The corridors identified along the extent of Sims Way are: (1) the "Forest
Corridor" defined by extensive trees on both sides of the roadway from the city limits to the Hilltop Tavern; (2) the "S Curves Corridor": defined by the
drop in topography (and resultant view) along the north face of the bluff overlooking the bay from the Sheraton/Sims Way intersection to the 10th
Street/Sims Way intersection; and (3) the "Bluff Corridor" defined by the bluffs from the Washington Street/Sims Way intersection to the ferry landing
on Water Street.

Established and developing, the districts are delineated by these corridors. The districts are entered and exited through the corridor configuration
and could be developed as "commercial neighborhoods", each with its own special identity as a "place". The districts, over time, could have the same
locational significance as "uptown" and "downtown". Between the Forest and "S" Curves Corridors is the Upper Commercial District as identified in the
Gateway Charrette. This area has traditionally provided service commercial facilities for the residents of Port Townsend. Its use by tourists has been
limited and has been more of a "drive-through" area than a destination. The district defined by the "S" Curves and Bluff Corridors is the "Flats"
Commercial District. Until recently, this district was dominated by Port activities and the Kah-Tai Lagoon Park area. Recent commercial
development at the Safeway/McDonald's area and new motel development on Washington Street near Kearney has begun to change the character of the district from industry/commercial to a more tourist/commercial orientation. While the industrial/commercial elements will continue, they will become less dominant in this district. The last district in the chain is the downtown defined by the Bluff Corridor and the Admiralty Inlet at the north end of Water Street.

The rhythm of Corridor-District-Corridor-District-Corridor-District illustrates the existing urban form where future emphasis can be given an area either as a "place" or a transition between "places" along the length of Sims Way/SR 20. The linearity of the roadway no longer controls development form, but services neighborhoods of activity.

Rooms in the Districts

In further attempts to break the linearity of the roadway, the Development Plan proposes breaking each district into a series of "rooms". Again, rooms are defined by natural features. In the Upper Commercial District, the rooms are defined and separated by major planting areas located perpendicular to Sims Way. These planting areas are located in the natural drainage ravines north and south of the roadway. Within the Upper Commercial District, the potential of three rooms exist by building upon natural features. Integrated into each room is a "centering" intersection that is keyed to the functional development of the traffic artery. The building of the intersection, access points, and resultant structures potentially give these points along Sims Way unique character and quality-and the ability to develop a sequence of activities within each district that break the linearity of the corridor.
The Creation of a Linear Urban Form

The Design and Development Guidelines are created around four major themes, each of which addresses key elements of development and scale that contributed to the linear urban form that was initially envisioned in the Gateway Concept Plan. Gateway Concept, Gateway Circulation, Gateway Character, and Buildings and Site Development are critical areas for consideration in future development and redevelopment. The intent of the Gateway Development Plan, as well as the Design and Development Guidelines, is to create a framework for future evolution of the City that will create a chain of neighborhoods from the City limits to Point Hudson--neighborhoods defined as "places" within the City by building upon, and rebuilding, the natural vegetation and topography of the land. This was the underlying goal of the Gateway Concept Plan-to create a Gateway area that is as unique as its historic counterparts-a city carved out of the wilderness.

2a. IMPLEMENTATION OF THE GATEWAY PLAN

This chapter sets the framework on how the plan will be used by the city and the state, who the plan may affect, who and how will the recommended improvements be funded, and how it will affect future development along the SR 20/Gateway Corridor.

Which Properties are Included in the Gateway Planning Area?

The Gateway planning area is from the city limits along SimsWay/SR20 to the state ferry terminal on Water Street, a distance of about three miles. For planning purposes only, the Gateway consultant team examined adjacent land uses within 200 feet on either side of the state right-of-way. This was done to determine the potential number of vehicle trips which may be generated by future land uses adjacent to SR 20, and to plan for adequate access for businesses and other adjacent uses. The recommendations in the plan, however, pertain only to those uses directly abutting SR 20 or those uses which would have a significant impact on the future capacity or traffic safety of SR 20.

The Plan as a Guide for Development

The Gateway Development Plan recommendations are a comprehensive blueprint for action. Implementation of the plan will improve traffic safety along the corridor, make the City’s entrance more visually inviting, and promote the economic vitality of district businesses. Most importantly, the Gateway Plan sets out a community-wide vision that the City and Washington State Department of Transportation will use in the design, permitting and funding of new roadside improvements along SR 20.

The Plan will be used as a tool to guide development in three basic ways. First, the Plan will be used as the primary vehicle to obtain state and federal funding. Statewide competitive funding programs, administered by the Washington State Department of Transportation (WSDOT), encourage cities and counties to prepare a comprehensive route development plan in order to receive discretionary state funding for roadside improvements. Adoption of the Plan by the City increases our chances in obtaining funding for transportation-related projects along SR 20.

Second, the Plan will be used by both the City and WSDOT when reviewing and permitting new development projects immediately adjacent to SR 20. WSDOT has jurisdiction over any new roadside improvements which may be required between curb-to-curb (or the actual roadway surface). For example, a bank proposed for development along SR 20 would likely be found to generate X number of new vehicle trips to and from its facility. This additional traffic would likely cause significant traffic turning movements and/or delays, as well as potential traffic safety hazards. As a condition of development, WSDOT could require the installation of a two-way left hand turn lane to facilitate better travel (reduced delays) and safer left-hand turns into and out of the new bank. Under this example, the city would have jurisdiction over any streetscape improvements outside of the actual roadway surface (e.g. between the curb and the adjacent private property) but within the 100-wide right-of-way of SR 20. These improvements would typically include monument signs, pedestrian paths, landscaping and lighting along the highway.

Third, adoption of the Plan by the City and WSDOT assures citizens of Port Townsend that future improvements along SR 20 will be consistent with the intent and recommendations contained in the Plan. That is, future roadway improvements by WSDOT will be consistent with the plan and emerging traffic safety problems will be addressed in an efficient, orderly, planned program of improvements. Similarly, the plan provides developers and business owners assurance that the City and WSDOT will be reviewing future projects in an orderly, consistent manner which sets out policies and standards which they can rely on in preparing their development plans. And finally, it will streamline the permit process by allowing the City to permit streetscape improvements (such as monument signage, pedestrian walkways, landscaping, etc.) within the right-of-way rather than property and business owners having to obtain WSDOT approval and entering into a lease agreement.

Who Pays for Implementation of the Plan?

One of the critical issues related to the Gateway Development Plan is who will pay for the estimated $10 million of proposed improvements. Future funding of the improvements recommended in the Gateway Development Plan will likely come from a variety of sources. It is the City's intent to finance most of the planned improvements through 80% state or federal matching funds. This may be accomplished through various grant programs such as the Intermodal Surface Transportation Efficiency Act (ISTEA), Statewide Transportation Program (STP), WSDOT Category C funds, or similar funding programs (see Gateway Implementation and Financing Strategy, March 1991).

City contributions will be necessary to match WSDOT funding programs, and to foster public/private partnerships. This could be accomplished by the City reserving a certain percentage of new growth-related tax revenues to fund Gateway related improvements. Private property/business owners, in a partnership with the city may elect to solicit funding for specific Gateway improvements which directly benefit their properties. City funds reserved for Gateway, and supplemented with private/business contributions could be used for the local 20% match, if state or federal funding were obtained.

Private development project proponents will also contribute to Gateway improvements as new development occurs, as illustrated by the bank example above. This will be achieved on a fair share, or proportionate cost basis, dependent on the amount of traffic, or other impacts caused by proposed new development. Existing business and property owners will not be asked to contribute to the costs of these improvements unless they are part of a larger improvement district among several owners.
Phasing of Implementation

Implementation of Gateway improvements will occur incrementally as funding opportunities and new development projects arise. It is likely that plan implementation will be phased over the next ten to twenty years. Therefore, it is important to prioritize an implementation schedule that is realistic of costs and addresses critical problem areas first. There are five major realignment and/or signalization projects recommended in the plan. Each one of these projects will involve substantial state or federal funding to be accomplished. Successful funding will require a high degree of cooperation between the City, WSDOT and the property owners in each of these areas.

A Gateway Implementation Committee should be established to assist the City and WSDOT in prioritizing projects for funding, work with other property and business owners in determining their needs, and to help in the grant preparation and implementation schedule. The Committee should be charged with implementing the vision of the Gateway plan, while understanding that we must proceed in smaller increments, over time, sized to meet the capacity and needs of the community as a whole in each year.

City Council Resolution

In addition to the preceding discussion, on implementation of the plan, the City Council adopted Resolution No. 9367 to provide property and business owners with specific assurances as to how the City will implement the plan over the long term. This resolution was designed with the help of the Planning Commission and representatives form the Port Townsend Chamber of Commerce and other interested citizens in an attempt to resolve some of the concerns expressed during the Gateway workshop meetings. The resolution provides a set of guiding principles the City has committed to in its implementation of the Gateway Development Plan.

RESOLUTION NO. 9367

A RESOLUTION adopting guiding principles for the City of Port Townsend to use in the Gateway Development Plan adoption process and future implementation of the Gateway Project.

WHEREAS, the Port Townsend City Council requested and authorized preparation of the Port Townsend Gateway Development Plan to guide improvements to the SR 20/Sims Way Corridor area; and

WHEREAS, the Gateway Development Plan was developed "to improve and preserve the overall quality of life and facilitate the creation of a graceful community for both residents and visitors;" and

WHEREAS, the Gateway Development Plan recommendations are made to further the community goals of traffic safety, economic vitality and streetscape appearance to assure the interests for the community as a whole are served; and

WHEREAS, implementation of the Gateway Development Plan must include a continuing dialogue and involvement of the community in the development of the corridor and must ensure that the Gateway concept is implemented, in a timely, cost effective and efficient way; Now, Therefore,

BE IT RESOLVED by the City Council of the City of Port Townsend that the following set of principles will guide adoption and implementation of the Gateway Development Plan:

1. It is the intent of the Gateway Development Plan to enhance economic development, support business strength and expand available shopping and services-primarily for residents. At all stages of consideration of the plan and at each step in plan implementation, private property rights shall be respected.

2. The City of Port Townsend will make all reasonable efforts to help property and business owners examine workable alternatives and plan for future roadway improvements along SR 20 consistent with the Gateway Development Plan.

3. The Gateway Development Plan is a blueprint for action. It is a tool to be used to obtain funding from the Washington State Department of Transportation (WSDOT) to provide comprehensive roadway improvements. The plan will also be used to provide more predictability for developers and to assure that the City and WSDOT use a consistent method to evaluate new development proposals in the Gateway corridor.

4. The plan's recommendations pertain to those properties directly abutting SR 20 and/or adjacent properties which, when developed, may have a significant impact on the operation, vehicle capacity and traffic safety of Sims Way/SR 20. All references within the plan to properties within 200 feet of the SR 20 right-of-way are for planning purposes only and have no relevance or bearing on any future district which may be created for assessment purposes.

5. Implementation of improvements recommended within the Gateway plan are anticipated to occur incrementally as opportunities occur within the next twenty years or more. While the plan's intended to provide consistent guidance, it is recognized that conditions along SR 20 will change over time, as will the need for refining certain recommendations in the plan, depending on site-specific characteristics and conditions at a particular time and location.

6. Similarly, the major recommendations of the plan will be phased over the long-term, and are dependent on the amount of federal and state funding that can be obtained. Implementation of major roadway improvements will require successful cooperation and coordination between property
3. DESCRIPTION OF THE CORRIDORS AND DISTRICTS

The Gateway Development Plan is an incremental treatment of the Corridors and Districts that comprise the three-mile length of SR 20 (Sims Way) from the city limits to the historic downtown core. The result of the Development Plan, when implemented, is the delineation of a number of "neighborhoods" that the traveller passes through upon entering the town. The distinction between different neighborhoods, and highlighting and building upon the unique characteristics of each, provides new economic opportunities for the land owners and business operators-and by adherence to the Design and Development Guidelines outlined herein, enables public and private entities to enhance and redevelop properties as a pan of a larger community order.

Each Corridor and District is described separately: first, discussing the current status and condition; second, synopsizing the traffic recommendations made for that particular Corridor or District; third, discussing detailed streetscape recommendations; and fourth, detailing unique pieces of the Corridor or District. Where practical, graphic aids (drawings and computer photo simulations) have been utilized to illustrate the recommendations and expected outcome of the Development Plan.

And what will it look like when completed? The Development Plan aims toward creating a linear urban structure that is a direct reflection of the goals and values of the citizens of Port Townsend. It is a Plan that requires a number of incremental actions by both public and private entities. Each small improvement (sidewalk, curb, light, sign, awning) will contribute to the whole and compliance to a guiding concept for the whole will make each increment that much more important in the overall effort. The success of the Plan, and the final "look", is dependant upon a commitment through public and private action to its realization.

Therefore, the Plan should be interpreted as an "agenda for action" that will build a number of neighborhoods (districts with rooms) linked by natural features (Corridors) that are unique to Port Townsend; that will give a diversified flavor to the approach to the historic downtown; that will create commercial areas to serve both citizen and visitor; that will build back the image of a "city carved out of the wilderness."

3.1 FOREST CORRIDOR

Status/Condition

The Forest Corridor begins at the Mill Road intersection with a small group of commercial buildings and the City of Port Townsend" welcome sign. The remainder of this corridor is an area which is undeveloped, for the most part undifferentiated from the area outside of the City limits. The character for a "green corridor" or "Forest Corridor" within the City limits, is a strong introduction for a town "carved out of the wilderness." Land use adjacent to the corridor is critical in terms of preserving the corridor.

Sims Way is built as basically a two-lane rural highway. Lanes are 12" wide, with a third 12’ left turn lane at the Mill Road intersection; there are shoulders along both sides.

Traffic safety is compromised at the Mill Road intersection by poor sight distance, and the lack of signalized control. Because of these problems, tractor trailers prefer to use the Thomas Street intersection to by-pass the Mill Road/Sims Way intersection.

Traffic Recommendations

Several improvements on Sims Way are recommended:
- The short link with Discovery Bay Road at this intersection should be widened to three lanes to accommodate more vehicles waiting to turn left or right onto Discovery Bay Road.
- Left turns to private properties within 300 feet of this intersection should be banned when signalization occurs, with westbound left turns made at the Mill Road intersection during the left-turn signal phase. Signs and enforcement should be consistent with a 30 mph speed limit approaching the Mill Road intersection.
- "Discovery Road" and "Mill Road" signs should be added on the eastbound lane of Sims Way, before this intersection.
Continuous bicycle lanes are recommended along both sides of Sims Way in the Forest Corridor. Informational signs describing alternate bike routes and potential hazards on SR 20 should be installed at the entrance to the Forest corridor.

Streetscape Recommendations

The character of the town "carved out of the wilderness" should be preserved by protecting the existing trees within 150'-200' of Sims Way. Infill planting of conifers along the Sims Way right-of-way, where not in conflict with businesses, will enhance the character of a "green corridor". The planting of coniferous trees directly behind the City Gateway sign will help reinforce the forest image along this section of Sims, and differentiate this section of SR 20 as part of Port Townsend.

Further, the City should obtain an easement along the corridor in order to preserve existing trees. As private properties develop, care should be taken to protect existing trees, as well as to provide new native conifers and associated understory plants.

Private commercial signs near the Mill Road Intersection should be consolidated. Parking and service elements adjacent to buildings should be screened with architectural or landscape elements. All utilities should be underground.

The proposed continuous shoulder lanes along both sides of Sims will provide a bike lane throughout the Forest Corridor. A pedestrian path is to be developed adjacent to Sims, separated from the road by trees (see Figure 1). A small parking lot for a tourist shuttle may be developed at the west end of this corridor perhaps off of Mill Road. The exact location is subject to availability of land, and coordination with Jefferson County Transit.

Details/Intersection Recommendations

The Transportation Analysis (see Appendix 6.2) shows signalization is necessary within the next few years at the Mill Road intersection. This will prevent conflicts between side street movements and through traffic, and allow safer turning movements in and out of Discovery Bay Road and Mill Road without excessive delays in summer months, and foster truck/trailer left turns out of Mill Road, rather than Thomas Street. This would reduce congestion on a long stretch of Sims Way, encouraging trucks to use the shorter route away from the Port Townsend Paper mill and away from nearby commercial and residential developments. Such signalization would also help break the flow of traffic, enabling side street vehicular and pedestrian movement across Sims Way at unsignalized intersections.

3.2 UPPER COMMERCIAL DISTRICT

Status/Conditions

This section of Sims Way is comprised of three "rooms": various commercial buildings creating the "emerging commercial" room at the west end, the "established commercial" room midway and the "Castle Hill" room at the east end. The "emerging commercial" room is a continuation of a town in the wilderness image setting, created by the stretch of conifers as a backdrop. Lack of curbing creates poor traffic and parking control, and a poor pedestrian environment. Existing parking and building service elements (propane tanks, ventilation equipment, garbage collection, etc.) are exposed to view. There have been minimal landscape improvements along commercial properties. Some of the parking along this section of Sims is diagonal at edge of the roadway, creating a safety hazard as cars back onto Sims.

In the "established commercial" room, the conifers begin to thin out, and the image of the town in the wilderness erodes. As in the "upper commercial" room, lack of curbing creates poor traffic control and a dangerous pedestrian environment, and there is no service or parking screening.

The "Castle Hill" room also has no curbing or screening of parking or service elements. Limited landscaping at businesses has been developed due to the scale of Castle Hill Shopping Center, and the near disappearance of the conifer backdrop, creates a more urban character. There are two ravines which are in poor condition due to earth and debris fill. Development has altered much of the native vegetation. Conifers along the roadway close off the view corridor to these ravines.

Traffic Recommendations

This section of Sims Way requires curbing and clearly defined access points with the construction of an additional median lane for left turns. Properties and curbs should be set back from the road to permit construction of the median lane.

Existing access and egress points to several properties on this section of road could be consolidated to reduce the number of driveway locations.
Curbing is necessary to limit access to specific, well-delineated entry/exits along this portion of Sims Way. Suggestions on consolidation of existing access points which could operate with shared driveways include:

- Consolidate access at existing Jackpot driveway with Port Townsend Honda;
- Consolidate access with Napa Auto Pans to that of the emerging commercial group west of the ravine;
- Consolidate access at one point on Sims for Port Townsend Cafe and State Farm Insurance, granting an easement to the vacant property to the south. Relocate parking for the Cafe to the west side and rear. Consolidate access of Port Townsend Car Wash, Port Townsend Laundromat, and White Rose Antiques at one point on Sims and one point on McPherson;
- Relocate the existing parking for Dis’n’dat Store, John’s Auto Supply and Bluebird Antiques to the rear and west side of these buildings via a single driveway off Sims Way and “back door” access from McPherson Street;
- Consolidate access for Hilltop Tavern at one clear driveway.

Measures should be taken to minimize any future access points along this segment of Sims. Signalization, to handle traffic volumes and left turns, is recommended at the realigned Sheridan Street/Castle Hill and McPherson/Thomas Street intersections. Street realignments and signalization are discussed in detail as follows in "Details/Intersections Recommendations".

Left turn lanes are recommended along Sims between the proposed Industrial Park and Thomas Streets, and between Hancock and Sherman Streets (see Figure 2). A left turn lane with altered one-way movement is recommended between Hendricks and Sheridan Streets. Additional widening of Sims is required for 2010 conditions between Hancock and Sheridan Streets (see Figure 3).

Streetscape Recommendations

It is recommended that the uniform visual backdrop of conifers be maintained and strengthened throughout all of the “rooms” of this District. This can be accomplished by encouraging a rear property line planting of conifers.

The pedestrian environment can be improved by planting deciduous street trees along Sims at 50’ intervals. Low shrubs or ground cover can be used to create an understory around the street trees. Sidewalks should be developed along the south side of Sims Way between Hancock and McPherson and along the north side of Sims Way between Cleveland and Hancock streets. Crosswalks should be located across Sims at Hancock and Grant Streets, and at the new Thomas/McPherson intersection. Lighting should also mark the crosswalks.

The two existing ravines; near Lasalle and McClellan Streets, should be protected to provide adequate drainage and preserve a greenbelt. These drainageways should be protected and restored by recontouring along both sides of Sims to remove existing fills. A roadway configuration of 48’ should be established utilizing fill, retaining walls and pedestrian bridges designed to reinforce the natural features of the ravine. Conifers are recommended along the Sims right-of-way.

Commercial building should share driveway access wherever possible. Architectural and landscape screening should be created around service elements and parking, and parking should be located beside or behind buildings wherever possible. All utilities should be underground.

Details/Intersection Recommendations

Recommendations, McPherson and Thomas Streets

Signalization is recommended on a fully actuated basis for 1995-2000 at the proposed realigned Thomas/McPherson Street intersection. Signalization would permit side street vehicular and pedestrian movement across Sims Way and help break the flow of traffic to enable similar side street vehicular and pedestrian movement across Sims Way at nearby unsignalized intersections. Along with this, realignment of McPherson and Thomas Streets is recommended (see Figure 4). This proposal connecting McPherson Street to Thomas Street forms a continuous route between Discovery Road and the Port Townsend Paper Mill. It would foster “back door” access to properties along 4th Avenue (the restaurant, car wash, laundromat, antique shop, veterinary center), help consolidate access points, and reduce traffic on Sims Way.

This realignment would accommodate the construction of a median left-turn lane on Sims Way allowing north and south movement from Sims Way to both McPherson and Thomas Streets.

The recommended intersection will have better sight distance and geometries than the existing Thomas Street intersection. It could be constructed on mostly existing paved public right-of-way. The only acquisition of vacant land would be from the Silver Palace Restaurant (currently used for parking) and to move the Calvary Chapel 75 feet to the north to allow for the realignment of Thomas.

Since these options are expensive and will require outside funding and a couple of years to develop, short term measures are needed. This would include clearing trees and brush to the north of McPherson Street, relocating parking on the south of McPherson Street at the Dis’n’dat store, and relocating the planter in front of the Port Townsend Car Wash.
"After" shows the planting of a conifer backdrop, a planter strip and pedestrian sidewalk, left turn lane and a bike lane along the shoulder. More uniform signage is developed and utilities (except major transmission lines) are installed underground.
"After" provides tree planters on both sides of Sims Way, and pedestrian walkways. A continuous left turn lane, a right turn only lane, and more uniform "monument" type signage are also developed. A new signal beacon creates a new pedestrian crosswalk. Utilities are underground.

Recommendations, Upper Commercial District, Thomas to Hendricks Streets

This section of Sims Way, like that west of McPherson Street, requires curbing and clearly defined limited access, with the construction of a median lane for left turns.
Tree and shrub removal would enhance the view north to the valley as well as to the bay and the distant downtown. More developed vehicular turnout and signage. Benches, special lighting, and new landscaping would provide expanded usage of this site. Selective underground.

Memorial overlook. No street trees should be planted; however low shrubs could be planted along the west edge of Sims. All utilities should be protected views. A pedestrian path should then be created along the bayside of Sims Way to allow enjoyment of the views, and link to the existing Photo Hut booth toward First Federal Savings and Grant Street.

Replacement parking for the Castle Hill Center and Century 21 is available on the eastern strip of grass land 80' wide between the existing paved parking lot and Sheridan Street east of the building occupied by the State Department of Social and Health Services, and on the northwest corner of the property along 7th Street (between Grant and Sheridan Streets), and on the segment of Sheridan Street to be vacated.

There are several advantages to the Castle Hill/Sheridan Street realignment as recommended: access points would be consolidated; the intersection would be on more level ground; the sight distance would be considerably improved. Motorists seeking a left turn to Manresa Castle would see this building before turning, and left turn movement would become easier. Access to, and visibility of, the Castle Hill Center would be improved and the remaining triangle of land, combined with the vacated south end of Sheridan Street, would create a parcel of developable land of great value, maximizing views of Port Townsend Bay.

The new intersection would have high capacity left-turn lanes over 300 feet long both eastbound and westbound. Operation of the realigned Sheridan/Grant Street intersection would further be enhanced by closing the direct access into Sims Way from the Family Dental Center and the Port Townsend Vision Clinic, and redirecting access onto Grant Street. Signs can also be improved approaching this intersection.

3.3 "S" Curve Corridor

Status/Condition

As Sims Way curves through this corridor, steep grades provide several panoramic views of the bay, the valley floor, and Kah-Tai Lagoon. The viewshed is enclosed to the north with a deciduous landscape, and partly open to the south for bay views. The changes in road gradient and alignment create a distinctive character in this section of the Gateway Corridor. Groups of small residences provide a sense of community. Larger Victorian homes and the Manresa Castle surround the corridor.

Here, Sims Way is two lanes wide with shoulders on both sides. The west shoulder serves as a westbound climbing lane throughout most of the "S" Curve Corridor. Midway in this corridor is a small memorial overlook. The parking is insufficient, and the bay view is limited by tall dense vegetation.

Traffic Recommendations

Widening at this section of Sims Way is recommended for a second westbound climbing lane for heavier vehicles (see Figure 6). This could be accomplished by widening Sims along both the north and south edges. This may require modification and regrading of the slope, and perhaps structural support of the new pavement. Additional widening is recommended at shoulders for bicycle lanes and pedestrian movement. Appropriate cautionary signage is recommended. Curbing and access consolidation is recommended at the former Maestro Burger property, with access limited to 10th Street and a right turn only at the Hill Street access to SR 20. Hill Street should be vacated. A left-hand turn will be allowed at SR 20 unless, at some future date, a left-hand turn here presents future safety hazards.

Signage changes should include a "VIEWPOINT" sign approaching the viewpoint eastbound, a "PORT FACILITIES" sign approaching Haines Street eastbound, and a "HOSPITAL/10TH STREET" sign approaching 10th Street westbound.

Streetscape Recommendations

The views of the bay along this section of the corridor create a significant and lasting impression for visitors travelling eastbound into Port Townsend. These views could be enhanced by selective removal of vegetation which obscures distant views. Building heights should be limited to protect views. A pedestrian path should then be created along the bayside of Sims Way to allow enjoyment of the views, and link to the existing memorial overlook. No street trees should be planted; however low shrubs could be planted along the west edge of Sims. All utilities should be underground.

The Memorial Overlook, at present, is an underdeveloped resource. This resource could be greatly improved by providing better access with a more developed vehicular turnout and signage. Benches, special lighting, and new landscaping would provide expanded usage of this site. Selective tree and shrub removal would enhance the view north to the valley as well as to the bay and the distant downtown.
"After shows this section of Sims widened for a westbound climbing lane, and further widening for shoulders for use as bike lanes and pedestrian paths, and underground utilities.

3.4 THE "FLATS" COMMERCIAL DISTRICT

Status/Condition

Located on the valley floor of the corridor, this section of Sims Way levels out to a relatively flat roadway. "The expansive viewshed of the "S" Curve closes down to a straight, and more focused roadway corridor. Views are defined by a row of existing mature poplar trees. Glimpses of the Port of Port Townsend shipyards reinforce the sense of the City's special setting on the bay. Across from the shipyards, is the Safeway/McDonald's commercial development including an expanse of parking and the Kah-Tai Lagoon.

The commercial developments at the east and west ends of this District are distinctively separate from the Kah-Tai Lagoon area located about midway in the District. The Lagoon provides an important open space resource within the City. However, there is little recognition of the Lagoon presence from the roadway due to the linear emphasis created by the poplar trees along the north edge of Sims Way.
There are two triangle shaped sites, formed by the diagonal cut of Sims Way near Kearney, which have been purchased by the City for small parks. The site to the south of Sims Way has a large willow tree and the beginnings of a sidewalk. The triangle to the north of Sims Way has modest landscaping.

A group of businesses to the east comprise a commercial cluster, including two motels. These are some of the first services the visitor comes across, but are only accessible by car. There are also views to the east of the Bluff, Jefferson County Courthouse, and a unique residence fashioned after the Mukelito lighthouse.

Traffic Recommendations

In this District, the western segment of Sims Way requires widening up to the shopping center entry at Haines. The existing left turn median lane approaching Kearney should be extended west to Benedict for westbound turns. The median lane approaching Kearney Streets should be extended west to Benedict Street for westbound left turns from Decatur Street. This would foster access to properties adjacent, south of Sims Way (see Figure 7).

A paved bicycle and pedestrian path is recommended through the District. It would connect SR 20 and link to the proposed Waterwalk, Kah-Tai Lagoon and the Olympic Discovery trail (which uses the abandoned railroad row). The proposed signal at Haines St. establishes a safe crossing of Sims Way into the park.

A visitor’s parking lot is being proposed in the area north of the Safeway store, with a shuttle bus to the downtown area. The exact location would be verified with land availability, and the shuttle coordinated with Jefferson County transit. The existing Visitor Center could potentially be relocated at this proposed shuttle stop.

Streetscape Recommendations

The linear corridor quality of the poplar trees can be maintained, while enhancing views of the shipyards and the Historic buildings. Removal of “sucker” growth of the large poplars, and selective removal of the small, individual seedlings would open up views to the lagoon and boatyard. New poplars, spaced 20'-25' apart, can be selectively planted to fill in "gaps" along Sims. Meadow grass and wildflowers can be planted as ground cover around the poplars. The area north of Sims, adjacent to Kah-Tai Park, can be planted with willows, riparian plantings and other marsh plants to recall the lagoon's former link with the Bay.

A pedestrian link can be created by the development of a hillclimb in the Jefferson Street right-of-way to link the Kearney/Sims intersection and the County Courthouse, Bluff and Uptown Residential District. This hillclimb could feature works of art by local residents as well as information about Port Townsend's history and provide access to a shuttle/parking lot at the base of the hillclimb.

Throughout the District, landscape or architectural screening of parking and service elements should be required. Parking should be located to the side or rear of buildings where possible. Shared vehicular access into business should be encouraged. All utilities should be underground.

The east part of the Flats District could be strengthened as an interchange for pedestrians and vehicles, with opportunities for tourists to stop and orientate themselves, leave their cars behind while they walk to services, the Historic District, or up the proposed hillclimb. This area is oriented around the “Crossroads” intersection developed as part of the Waterfront Plan. Additional parking could be provided along the Jefferson Street right-of-way. Tourist support services are encouraged to locate adjacent to existing commercial development. Visitor parking, a seasonal visitor shuttle, and enhanced pedestrian walkways would make this area a staging point for visitors.

The pedestrian environment could be enhanced by using special paving on walks and providing benches, planters, bus shelter, drinking fountains, public art, and special lighting. Each of the "triangle" blocks adjacent to Kearney could be developed as parks and could be designed to help define the character of the flats district and entrance to Historic District. The large existing willow tree on the south triangle should be an integral part of the design.

Special feature plantings and annuals, along with trees and ground cover unique to this area would also strengthen the pedestrian environment both on these Triangles and the blocks adjacent. Trees should be low enough to preserve the views of historic uptown buildings and the Bluff.
A sidewalk is recommended along the south side of Sims Way between Decater and Water, with a natural path among the trees along the north side between Kearney and Haines, and around both of the "triangles" adjacent to Kearney.

Details/Intersection Recommendations

Signalization is recommended at the Safeway/Haines Street intersection. Traffic volumes indicate this will be warranted within the next few years. This is the main intersection between Sheridan and Kearney Streets. Concurrent with this improvement would be the extension of Haines Street through the Safeway parking lot. There is an unsafe situation as some vehicles currently cut through the parking lot between 12th Street and Sims Way. The creation of a public road would remedy this. Thirty-six parking spaces owned by Safeway, but relatively unused, would be eliminated. This would be curbed, preferably aligned with the segment of Haines Street south of Sims and situated between Safeway and McDonald's, with openings for parking lot access to both Safeway and McDonald's (see Figure 8).

![Flats District... "Before"](image)

Figure 8:
Recommendations, Kearny/Sims Way/Washington Street

The three-lane configuration of Sims Way intersects with the two-lane Kearney and Washington Streets. The existing signal at Kearney and Sims will remain, and a second signal at Sims and Washington is recommended when warranted by additional traffic counts. Until the second signal is installed, the traffic movements at Sims and Washington need to be limited to reduce the number of conflicting movements.

Four basic modifications are recommended regardless of the one-signal or two-signal configuration. First, the Kearney/Sims Way intersection is recommended to be reconfigured by vacating Jefferson Street from Kearney to Sims Way, removing the “small triangle” north to adjoin the bank property. The new right-turn configuration from Kearney to Sims would be controlled through the existing traffic signal. Second, if traffic congestion and ferry queuing problems warrant, Gaines Street should be examined to be one-way from Gaines to Sims Way intersection with an additional lane for ferry queuing. All curb-side parking along Gaines and Water Streets would need to be realigned to respond to the southbound and east-bound traffic flow resulting from the one-way configuration. Third, the intersection where Water Street joins Sims Way is recommended to be configured to allow left turns from east-bound Water Street to west-bound Sims Way. This can be accomplished by reducing the triangle in the right-of-way (at the east end of Port Townsend Mall) to a rounded curve and creating a left-turn lane, and ferry queuing lane on Water Street (west of this intersection). Fourth, east-bound traffic on Washington would not be allowed to enter Sims Way, but would be required to turn right into the one-way Games/Water circulation path.

When the second signal is warranted, turning and through traffic patterns at the Washington Street intersection with Sims Way could be facilitated through signalization, with the only change to the basic modifications listed above being the east-bound and west-bound movement on Washington Street. All through traffic, right- and left-turn movements in both directions would be allowed and controlled through the new signal.

After shows Sims widened for a continuous left-turn lane, and for bike lanes. The existing poplars have been trimmed, and also thinned to clear dead trees with additional ones planted as infill. Utilities have been placed underground.
3.5 THE BLUFF CORRIDOR

Conditions/Status

The Bluff Corridor of Sims Way connects to Water Street, and provides a link to the downtown Historic District. The "Crossroads" intersection at Kearny St. marks the entry into the Bluff corridor. This section of the Corridor consists of a two-lane highway with a shoulder to the south, and a narrow shoulder wedged between the bluff to the north. This bluff, 50 to 80 feet high, partially covered with grass and wildflowers, is a predominant feature all along the corridor. The narrowness of the corridor and the views to the water give a sense of Port Townsend's location along the bay. Motels, condos, and small commercial buildings are spaced along the south edge of this section of Sims Way/Water St. These commercial amenities, along with the unique character of the Bluff and views of the bay, provide opportunities to reinforce and improve the tourist and pedestrian environment.

Streetscape Recommendations

As noted above, bay views, the unique Bluff form, proximity to the ferry and distant views of the historic district make this segment of the Gateway ideal for lodging and other visitor activities. A pedestrian sidewalk, separated from the traffic by landscaping, should be developed along the bay side of Water Street. The bluff along Water Street should remain unobstructed from view, and underground relocation of powerlines should be a priority in this segment of Gateway. Parking and service areas should be screened with architectural or landscape elements. All utilities should be underground.

Traffic Recommendations

Traffic analysis shows that widening is not necessary along Water to add capacity. Some widening is necessary, however, to extend the queuing lane for ferry traffic along the south edge of Water. The most cost-efficient plan for a bicycle lane would be to incorporate it into the existing shoulder on the bluff side of Sims (see Figure 10). The proposed queuing lane on the south can also accommodate bicyclists. A sidewalk can be accommodated along the south edge of Sims. It is also recommended that an electronic signage system be considered to indicate ferry waiting time.

Ferry Queuing and Parking Recommendations:

A draft Parking and Management Plan for Port Townsend and Keystone Terminals (August 1992) has been prepared by the Washington State Ferry Division (WSF). The WSF Plan provides an in-depth look into short-term and long-term issues relating to parking needs to service the ferry. The WSF Plan, however, does not address queuing issues associated with the operation of the ferry terminal on SR 20.

This section of the Gateway Plan lists alternatives the City would like WSF to consider in its planning for future state ferry service. From the City's perspective, the issue of short-or long-term parking management as well as vehicle queuing needs should not be separated. Due to the location of the ferry terminal, lack of suitable nearby parking areas for both short and long-term ferry parking, and existing problems with ferry queuing, these issues need to be addressed comprehensively, examining the connecting highway/marine transportation system and their relationships.
The WSF Plan indicates that commuter walk-on ridership on the Port Townsend-Keystone run is presently minimal. It should be noted that WSF currently does not provide any parking areas for walk-on ferry patrons. The WSF plan indicates that the potential for significant increases for future walk-on/commuter patrons is likely to be relatively low due to existing (or potential) employment markets within close proximity to the Keystone terminal. However, it is recognized that Port Townsend is increasingly used as a demarcation point for bicycle touring. This and the potential for a coordinated transit link to the Keystone Terminal may result in unanticipated future increases.

Recent WSF studies also forecast a 25% increase in ridership (primarily drive-on patrons) between now and the year 2000. A 25% increase in drive-on ridership would cause significant impacts on the queuing lanes (along Water and Gaines Streets) to the ferry and likely result in the need for longer queuing lines and much more spillover congestion and safety impacts on SR 20.

To mitigate these potential impacts, the City, WSF, and WSDOT, District 3, should work cooperatively to explode both short and long-term alternatives to the parking and queuing issues discussed above. Alternatives to be studied (in no particular order) should include, but not be limited to, the following:

Queuing Alternatives:

- Expansion of ferry terminal to alleviate future on-street queuing impacts.
- Utilization of Indian Point by WSF to provide an off-street holding area for queuing of ferry traffic. The shoreline area of the property could also provide a linear park for public enjoyment.
- Creation of alternative ferry queuing lines with additional capacity and possible electronic signage system to facilitate ferry queuing.

Parking Alternatives:

- Utilization of the Chevron property (parcel directly across from ferry terminal) for use as walk-on patron's parking area.
- Establish remote park and ride shuttle lot (possibly north of Safeway) for short and long-term ferry parking in conjunction with other governmental agencies such as the City, Jefferson Transit, Port of Port Townsend, Washington State parks, to be used for special events and employee parking.
- Explore possibility of Indian Point property to accommodate both short/long-term parking as well as off-street ferry queuing.
The Purpose of the Detailed Access Management Plan

The Gateway Development Plan seeks to balance the need for highway expansion with the community's vision of maintaining the Gateway Corridor as an auto-oriented commercial district. This vision is dependent on a three-lane highway, where traffic speeds do not exceed 30 mph, and provides adequate bike lanes, pedestrian walkways and streetscape amenities, thereby creating smaller neighborhood commercial districts and avoiding "strip" development as found in other towns fronting along a state highway.

Throughout the Gateway Corridor, the Sims Way/SR 20 roadway encompasses a 100-foot state right-of-way. However, numerous existing buildings have inadequate setbacks and front on the state right-of-way line. Many of these businesses have traditionally used the state right-of-way for private purposes such as parking or loading areas. To carry out the Gateway vision, some existing businesses will lose the use of the state right-of-way for private purposes such as parking.

If traffic growth along the Corridor increased dramatically in the next five to ten years, it is possible that the highway (on numbers alone) may need to be expanded to more than three lanes. It is the City's belief that expansion beyond three lanes, with attendant bike lanes, would have even more serious impacts on community character and business operations along the Gateway Corridor.

Therefore, to achieve the vision set forth in the Gateway Development Plan and avoid unnecessary widening of the roadway (more than 3 lanes), the highway must operate at its highest level of efficiency and safety. A Detailed Access Management Plan will help the city and state achieve the necessary roadway capacity for the future traffic growth into Port Townsend, including better traffic mobility and efficiency, and better, safer egress and ingress to businesses along the Gateway corridor. The Detailed Access Management Plan also illustrates graphically the result of the improvements recommended in the previous section of this report (Description of the Corridors and Districts).

Roadway Configuration

To carry out this balancing act and to achieve the Gateway vision, a 48-foot roadway configuration is recommended (see Figure 11). The roadway includes two 12-foot directional moving lanes and a 12-foot two-way left turn lane. A two-way left turn lane is located near the center of the roadway for use by vehicles making left turns in either direction. A continuous left turn lane would improve the operation and safety of the highway, and provide safer left hand turns at mid-block and minor street intersections. The left turn lane shall be developed along the entire corridor with the exception of the Forest Corridor (no businesses projected in this area), or in areas where the topography necessitates narrowing of the roadway. In the three-block area from Hancock to Sheridan, the roadway takes on a four-lane configuration to handle higher traffic counts currently in the area and allow for transition of the climbing lane coming up the "S" curves.

The roadway configuration would also include a designated 6-foot bike lane on each side of the highway. As more and more visitors come to Port Townsend on bicycles, and as bicycles increase as an alternate mode of travel, bike lanes will likely play an important role in Port Townsend's future.
Flex Zone

The recommended roadway configuration also includes 26 feet on each side of the paved highway for uses designated within the "flex zone." The flex zone would establish a combination of uses within its 26 feet, depending on specific site conditions. Generally, the flex zone is defined as a landscaped area of the state right-of-way which could provide pedestrian facilities, walkways, monument signage, bus pull-outs or other streetscape amenities. The design of the flex zone is based on the roadside environment, adjacent land uses, pedestrian volumes, user-age group, economic analysis, and continuity of adjacent pedestrian walkways. Modifications to the flex zone when a four-lane configuration is necessary are shown in Figure 12.

Pedestrian Facilities and Walkways

Along the Gateway Corridor, walkways may be sidewalks, pedestrian grade separations, or walking trails. Walkways would be designed during project development, along with other flex zone design components. Walkways should be connected to adjacent properties when (re)development occurs. In the interim, some sidewalks will end at a developed property. In areas of high pedestrian traffic such as commercial retail businesses, school bus or transit stops, and industrial areas, pathways should incorporate raised paved sidewalks. In other areas, such as near Kai Tai Lagoon, or adjacent to Bishop Park or other natural features, walkways would use natural surfaces and connect to other existing trails.

Signage

Placement of all sign locations will be checked to ensure that a sign's visibility is not obstructed from the roadway, and that the sign does not interfere with the visibility of other signs or with a driver's sight distance. All signage shall be consistent with the City's Sign Code Ordinance.

Transit Pull-Outs and Shelters
The SR 20 right-of-way will be used wherever possible for transit facilities. Public input should be sought in the location process along the Gateway corridor. Design features must be in compliance with applicable state and local regulations. Design components should include geometric design of access points, pull-outs which allow continuous bicycle movement, landscaping, illumination, and other streetscape amenities.

Streetscape Improvements

Streetscape furniture, streetlights, trash receptacles, landscaping, markers, etc. are encouraged to be located within the flex zone. Each commercial district will, with the assistance of City Staff, select and establish specific streetscape standards for their section of the Gateway.

Detailed Access Management Plan

The Detailed Access Management Plan is the mechanism for the policy application of the Gateway Development Plan. The Access Plan describes how the Gateway Corridor will function and look once it is redeveloped. It also gives guidelines for the location of access points and driveway geometries.

Controlling access points serves to improve highway capacity and mobility, and reduces traffic congestion and hazards from uncontrolled access fronting a high-volume highway. With control of access, driveway’s entrances and exits are designed to enable vehicles to enter and leave safely with a minimum of interference with through-traffic. In areas along the Gateway corridor today, backing into the right-of-way or uncontrolled access has become a major factor in reducing its capacity, increasing the accident potential, and eroding the mobility function a highway is designed to provide.

Provision of a two way left-hand turn lane and control of driveways are the major components of improving access control along Sims Way. Access control also tends to discourage strip development along a highway.

It is likely that undeveloped property along the Gateway will experience commercial development within the next 5-10 years. And there is a reasonable expectation that adjoining property will be redeveloped to a more intensive land use, resulting in greater traffic congestion. The detailed access maps (Figures 13, 14, 15, 17, 18) anticipate such changes and provide a framework for future development.

The detailed access map illustrates these potential access points for the Gateway corridor. It serves as a guide and is not intended to be absolute; access points and driveways will be determined on a case-by-case basis as (re)development occurs. However, new development must be consistent with the following access design guidelines.

Access Design Guidelines

The following guidelines are used to determine the number and location of access points:

Backing Into ROW. Access points shall not be approved for parking or loading areas that require backing maneuvers into the right-of-way.

Sight Distance. A minimum sight distance should be provided at all access points as specified in Washington State Department of Transportation standards. Approaches located in areas where sight limitations create undue hazard should be relocated or closed. Joint access or access to another street should be sought in such cases.

Right Turns. Where necessary for safe and efficient traffic movement, driveways should be for right turns only.

Left Turns. Left turns should be prohibited to and/or from driveways under the following conditions:
- Inadequate corner clearances.
- Inadequate sight distances.
- Inadequate driveway spacing.
- Median opening would be too close to another median opening.

Parking. Curb parking should be prohibited along SR 20.

Limited Access Points. The number of access points to a property will be held to a minimum. One access point per property shall be permitted, with the exception of extensive frontage where one approach is unreasonable or for properties which feature separate ingress and egress points (e.g. gas stations). Access points may be denied along SR 20 if there is inadequate site visibility or could have the potential of creating a dangerous traffic situation.

Joint Access. Where possible, joint access points for two contiguous properties will be required. Joint access points should be located at the property lines.

Alternate Access Points. Parcels which have access to another public road or street are not normally permitted direct access to the highway.

Additional Driveways. More than one access point per property ownership could be permitted if a traffic study prepared by a registered traffic engineer approved by the City is able to demonstrate that additional access points are required to handle driveway volumes adequately and would not be detrimental to traffic flow.

Grades. Maximum grade and grade break criteria shall meet WSDOT driveway design standards.

Exceptions. Where modified access control is to be established, developed commercial areas may be excepted from control when all or most of the abutting property has been developed to the extent that few, if any, additional commercial approaches would be required with full development of the area.

Design Criteria. The following table shows the recommended minimum design features (driveways and auxiliary facilities). In certain instances, a traffic engineering plan may include variations from these minimums.

<table>
<thead>
<tr>
<th>Design Criteria</th>
<th>Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum spacing between two</td>
<td>100 feet</td>
</tr>
<tr>
<td>driveways</td>
<td></td>
</tr>
<tr>
<td>Minimum corner clearance</td>
<td>50 feet</td>
</tr>
<tr>
<td>Prohibit backing on SR 20</td>
<td>All properties</td>
</tr>
<tr>
<td>Prohibit parking along highway</td>
<td>All locations</td>
</tr>
</tbody>
</table>
Provide access from collector street in lieu of access from SR 20
Provide adequate internal circulation Per City code and parking space
Consolidation of access points between adjacent properties Frontages too short to permit minimum spacing
Provide adequate driveway entrance Provide minimum 15 mph width turning speed
Install medians to permit selected movements Where left turns across highway are prohibited
Ensure adequate sight distance As per WSDOT standards

Option Areas

In certain areas along the Gateway Corridor, more than one option is presented to give decision makers, the community and business owners choices as to how best to address problem situations or longer term community needs. The following section highlights issues and clarifies choices for particular problem areas.

Thomas/McPherson Street Realignment

The Gateway Development Plan recommends to realignment of Thomas/McPherson Street (see p. 14). Concern has been raised by the existing business along this section of the Corridor. As illustrated in the detailed access map, access would be consolidated along SR 20, but back door access would be enhanced by improving 4th Street to serve these businesses on the southern side of SR 20. The City would need to swap existing ROW with private parcels to make this access system work. In addition, the City would need to acquire some private property for realignment purposes.

On the northern side, parking and loading would also be provided at the rear or side of the buildings (i.e. John's Auto, Port Townsend Cafe and Balderas Insurance). Of special concern is the loss of parking in front of John's Auto. John's building fronts on the right-of-way line. Any expansion of the highway at this point will necessitate the removal of parking in front of John's building. A new entrance with provision for loading and parking will create at the rear of John's building (see Figure 14). Recent studies have shown that parking and back-door access for a main entrance has little effect on the economic vitality of commercial businesses if the business is visible from the street.

Castle Hill/Sheridan Street Options

Three different options are presented for improving traffic flow and safety at the Castle Hill-Sheridan Street intersection.

The first option, which is the preferred alternative described in the Development Plan, has two variations. Option la (see Figure 15) would establish a signal at the entrance to the Castle Hill Shopping Center and reconfigure Sheridan Street through the southeast comer of the Center. This configuration would resolve the major traffic safety problems of access to and from the Sheridan Street/SR 20 intersection as well as provide safer access to Grant Street, which has a high number of vehicle trips. This option still allows for the commercial expansion of two vacant parcels within the Castle Hill Center.
This preferred option would also create better visual and physical access to the shopping center with no net loss of parking spaces. However, it would divide the existing center in two, which would create difficulties in maintaining the existing Century 21 building as an integral part of the Center. On the other hand, it would enhance this parcel for redevelopment by the vacation of Sheridan Street. This parcel could then take advantage of better access, visibility from the highway and realigned street, larger redevelopment potential, and capitalize on magnificent views of Port Townsend Bay and the Cascades.

Option 1b (see Figure 15) includes the same features as la with the exception that it would promote the rezoning of the residential parcel directly to the east of Sheridan Street to commercial use. This would create a much larger commercial redevelopment parcel of about 18,000 gross square feet, and create additional parking opportunities. This parcel would be ideal for redevelopment of a hotel/restaurant facility or professional medical offices located nearby the hospital.

Option 2 (see Figure 16) is the status quo option. It would not require any modification to the Castle Hill shopping center. It would require acquisition and structural improvements of the residential parcel to the northeast of the Sheridan/Sims Way intersection, and structural improvements to the northwest corner of the Sheridan/Sims Way/Century 21 property, to improve sight distance and allow for widening of the roadway. This alternative would reduce fewer of the safety problems than the realigned intersection would.

Option 3 (see Figure 16) would signalize Hendricks and SR 20. Hendricks would require reconstruction north of SR 20 and would have a significant impact on the Sea Breeze trailer park to the west. New access would be improved to the south of SR 20 to the existing residential area. No left turns onto or from Sheridan would be allowed. Hendricks would become the major arterial, connecting with 7th Street to Sheridan, and would serve the hospital and residential areas north of SR 20. This option would improve the traffic safety and operational characteristics of SR 20 but would have significant impacts on the economic vitality of the Castle Hill Center and the Sea Breeze trailer park.

Visitor Center

Three options are presented for the long-term growth of providing for visitor services and information.

Option 1 is the enhancement of the existing Visitor Center near Jefferson and Sims Way. Figure 18 illustrates how to maximize parking opportunities, provide designated RV parking and easier access, and includes suggestions for landscaping to improve its appearance. Due to the limited capacity to increase parking supply at this location, this option is a short-term fix and may not meet the long-term needs of visitors coming to Port Townsend. It should be acknowledged that substantial public investment in this option may make it difficult to pursue Option 2 or 3 at a later date.

Option 2 would relocate the visitors center to the north of Safeway (see Figure 17). Direct access would be facilitated by signage and a traffic signal at Haines Place, which would cut through the existing Safeway parking lot. The Visitor Center would be located in conjunction with a Jefferson Transit shuttle stop and remote parking lot for visitor and long-term ferry parking. The advantage of locating the visitor center here is the greater parking capacity, providing shuttle service for visitors to the downtown, Fort Worden, or to state and private ferries, reducing traffic congestion, and the easy access to the nearby Kai Tai Lagoon.

Option 3 is a long-range option for relocation of the visitor center or a possible satellite visitor information center. It would be located at the entrance of city limits, near Mill Road, on the south side of SR 20 (see Figure 13). If offered for sale, the City would acquire the budget car lot for use as a remote parking area. The advantages of this option are similar to Option 2, whereby traffic congestion could be lessened through the City. In addition, a parking area at this location could serve bicyclists who would take the Olympic Discovery Trail into downtown. Location of the central visitor center here may necessitate a smaller satellite visitor center in the downtown to serve ferry visitors, or vice versa.
Figure 15: Upper Commercial District and "S" Curves Corridor: McClellan Street to Seventh Street

Figure 16: Options #2 and #3: Castle Hill Intersections

OPTION #2: MAINTAIN/IMPROVE EXISTING INTERSECTION
- REQUIRED: ACQUISITION OF PROPERTY
- IMPROVEMENTS AT INTERSECTION IF SCENARIO: MANHOLE, 6' X 10' SIDEWALK, DEER CROSSING SIGNALS
- NO MODIFICATION TO CASTLE HILL PARKING OR DEVELOPMENT
- NO IMPROVEMENT TO VISIBILITY/Marketable OF CASTLE HILL CENTER.

OPTION #3: NEW INTERSECTION/INTERSECTION
- REQUIRED: ACQUISITION/RELOCATION OF MANHOLE, 6' X 10' SIDEWALK, DEER CROSSING SIGNALS
- REQUIRED: ACQUISITION OF PROPERTY
- NO MODIFICATION TO CASTLE HILL PARKING OR DEVELOPMENT
- IMPROVEMENTS TO VISIBILITY/Marketable OF CASTLE HILL CENTER.

- MANHOLE OF TRAVEL BEHIND (CENTRE OF) CASTLE HILL CENTER. ALL ACCESS FROM MANHOLE LINED UP TO TIN STREET (BUILDING NO. 50)

- NO SIGNALS TO EFFECT (B至於 the road)
The Design and Development Guidelines address various elements of urban form that shall be addressed in the ongoing development of the Port Townsend Gateway. These Guidelines serve three purposes:
1. Provide prospective developers and designers with a checklist of issues that must be addressed in their development proposals;
2. Provide existing businesses with an overall conceptual approach that will enable the actions of independent businesses to be in concert with, and add to the Gateway in Port Townsend concept; and
3. Provide the City of Port Townsend with a method of evaluating public and private development or redevelopment proposals on a consistent basis.

These Guidelines are performance oriented and not prescriptive. They address issues regarding the look, feel, and function of the Gateway Corridor. They create an environment for design excellence to occur, for small actions to have a major accumulative effect, and for ongoing "reality" checks to see if the vision portrayed in the Gateway Concept Plan, and detailed in the Gateway Development Plan, is being accomplished. If the Guidelines are properly followed, each and every development increment will contribute to a better defined and coordinated Gateway in Port Townsend.

As part of an implementation strategy, the City needs to adopt the Guidelines and determine whether voluntary or mandatory compliance is
The Design and Development Guidelines address the following major themes and issues:

CORRIDOR CONCEPT

1.1 Character and Theme

Issue: Incremental development has spread out uses and made the Gateway Corridor a loose collection of individual buildings rather than a complex of buildings or districts that have a symbiotic relationship. The concept of the Gateway Corridor will develop from a concentration of a number of uses, including retail, office, residential, open space, and recreational opportunities. Establishing an identity for the Gateway Corridor does not require adopting an artificial "theme" to impose on new and existing buildings. It does require careful grafting of buildings, circulation and open space to ensure both variety and continuity in the Corridor.

Guideline: Proposed development should be consistent with the following Statement of Purpose of the Port Townsend Gateway Concept Plan. The Gateway Concept Plan was adopted by the Port Townsend City Council through Resolution 88-43 on May 11, 1988.

TO IMPROVE AND PRESERVE THE OVERALL QUALITY OF LIFE AND FACILITATE THE CREATION OF A GRACEFUL COMMUNITY FOR BOTH RESIDENTS AND VISITORS.
A. To create a community that provides continuity of positive visual quality and enhances the overall beauty of the community of Port Townsend.
B. To enhance the economic vitality of the corridor, its business and the community as a whole.
C. To provide a safe corridor to and through the community for motor vehicles, pedestrians and bicycles.
D. To maintain continuing dialogue and involvement of the community in the development of the corridor.
E. To ensure that the corridor concept is implemented in a timely, cost-effective and efficient way.

1.2 A Corridor of Multiple Activities

Issue: The Gateway Corridor currently has little identity as a "place" or as an introduction to the Historic District of Port Townsend. New development should add to the intensity of activity, integrating uses horizontally on the land and vertically within buildings. The "mix" of uses should foster activity throughout the day with the cycles of intensity governed by the uses introduced. The integration of uses within a building makes the building richer, both architecturally and functionally. Richer buildings make the ensemble of structures and interrelationships between buildings exponentially more exciting.

Guideline: New development and redevelopment should foster diverse uses and activities that are active, vibrant, people-oriented and family-focused. New development should encourage a mix of activities on the ground level which enhance the commercial opportunities and diversity of the Corridor, and provide needed community services.

1.3 Corridors and Districts

Issue: Sims Way (SR 20), from the entrance at the city limit to its end at Water Street, is a series of corridors and districts. The corridors are defined by strong natural features of landscape and topography. The corridors are identified as the forest corridor (city limits to Hilltop Tavern), the "S" curves (Sheraton to 10th) and the bluff narrows (Water Street from Walker to the Ferry Terminal). The districts consist of built developments-that have a unique identity due to use and age. The Upper Commercial District is a strong service commercial and retail "strip" geared to serve locals. The Flats District is more mixed-use, with retail uses interspersed with parkland and port activities, and provides services for both visitors and residents. The last or northern district "corridors and districts" is the Historic Downtown. Recognition of the rhythm and theme of corridors and districts allows for individual pieces of the Gateway to take on separate and unique identities.
Guideline: New development and redevelopment along Sims Way should acknowledge the existing corridor/district concept in which natural features are the dominant elements of the corridors, and built features are the dominant elements of the districts. Districts should seek to develop a distinct character and identity through compliance with the design guidelines set forth for the districts in Section 1.4 below.

1.4 Districts

Issue: Within the Gateway Corridor several "districts" can be identified. These are defined by building groupings, land uses, topography, landscape elements and major intersecting streets. The development of these districts along the Gateway Corridor promotes richness and diversity, helps to give an identity of "place" within the larger context of the corridor, and helps to define circulation. Clear distinctions of these districts and their uses will provide richer opportunities for both motorists and pedestrians to enjoy the unique characteristics of each district.

Guideline: The design of buildings, landscaping, parking and pedestrian amenities such as walkways, arcades, or awnings should be based upon their identity within designated districts. Each new development or redevelopment should promote appropriate architecture, scale, views and landscape through the use of specific building materials, construction methods, building proportions, site planning, and landscape elements that are compatible with the surrounding district character.

1.5 Rooms in the District

Issue: City "rooms" are a basic building block of the Gateway Corridor districts - places for active and passive use by the citizenry. City rooms are defined by structures, types of land uses, geographic features, and vegetation delineating the space - buildings, fences, trees, views, walls. The character of the city room is determined by those uses and artifacts that are in and adjacent to the space. City rooms require surrounding uses to give them flavor. As in a building, city rooms should be a part of a larger sequence of spaces and places - a circulation system that links rooms to rooms, rooms to districts, districts to corridors. City rooms can be made more dynamic by the careful integration of vehicular movement with pedestrians, and relationships of uses from room to room.

Guideline: Development in both the public and private sectors should contribute to the formation of "city rooms." Within these rooms, specific commercial uses, circulation patterns, and architectural character will be encouraged to reinforce the room and its linkage to the district and the entire Gateway Corridor.
1.6 Intersections

Issue: Intersections in the vehicular network are usually designed according to function, combining traffic flow, utility needs, drainage requirements and pedestrian interface. The richness of the Gateway Corridor will require examination of all intersections to develop a series of hierarchies: movement, identity and definition. The Gateway in Port Townsend will be a rich overlapping of a number of functional elements that combine in a physical and sensory manner, of which intersections are one such element. Buildings abutting intersections, landscaping, and lighting will help define and articulate the function of the intersection in the overall conceptual organization of community traffic flow.

Guideline: All intersections should contribute to the development of intersection identities within a district or corridor. This can be accomplished through the placement of parking areas, the location of building entries, the relationship of new development to abutting uses, appropriate signage and buildings details such as the orientation of roof forms, and specific lighting and landscape standards.

CORRIDOR CIRCULATION

2.1 Vehicular Circulation

Issue: Public streets serve as vehicular and pedestrian ways between origins and destinations. Each street has a functional (traffic movement) requirement that effects both the development pattern and the character of that development In the Gateway Corridor, Sims Way and the abutting streets take on a larger significance and should be thought of as a linear corridors with floors, walls and roofs. The "character" of the street is defined by building enclosure, vegetation, street landscaping and furniture, surface textures, lighting and signage. The "functional" requirements of the street are set by the way vehicular movement interacts with activities served by the movement of vehicles.

Guideline: Streets, parking access and parking areas should be designed as an integral part of development along the Gateway Corridor. Vehicular and pedestrian uses should contribute to the urban setting through careful design relationships between buildings and circulation elements. Design considerations should emphasize basic functional requirements without compromising public safety. This emphasis on design acknowledges the important effect the streetscape has on the evolving character of the Gateway Corridor. All street development or redevelopment should incorporate landscaping, lighting, signage and surface textures that are consistent with the character of each Gateway District, Corridor, or room as outlined in these design guidelines.
2.2 Parking

Issue: Port Townsend is predominantly a single-family residential community with retail and commercial office centers located to be easily accessible by car. The reliance on the automobile as the primary mode of transportation will continue, but the way the car interacts with businesses can be modified from "the bumper in the window" syndrome. New and existing development must be served by convenient and attractive parking opportunities. Consolidated parking, serving more than one use or building, should be innovatively integrated with development to provide easy and safe access and security within an attractive setting.

Guideline: Vehicular parking should be considered as a significant design element of all new developments. New development should seek shared parking opportunities m existing parking lots and vacated streets where applicable. Parking lots should provide access to the "front doors" of buildings, but should not visually block nor dominate the face of buildings exposed to Sims Way. Appropriately scaled landscaping that is consistent with Section 17.30 of the Port Townsend Municipal Code should be provided to screen parking areas.

2.3 Pedestrian Circulation

Issue: Pedestrian circulation in the Gateway Corridor is unstructured, with intermittent sidewalks along streets and undeveloped pathways. The Gateway Corridor must foster a fully developed pedestrian system. The construction of the walking surface is only the initial step. Sidewalks and pathways need to be enhanced with street furniture, landscape and art objects, activity in abutting buildings, to provide a variety of experiences throughout the Gateway Corridor. The pedestrian system needs to include places to pause, rest, and watch the activities of the Corridor with provisions for both indoor and outdoor circulation. Pedestrian ways should connect buildings and activity areas of the Gateway in Port Townsend, but should also provide information, orient the pedestrian, ensure safe and secure "defensible" space and allow for handicapped access.

Guideline: The City should combine existing pedestrian sidewalks and trails with those provided by new development to create a continuous public walkway connecting public rights-of-way and spaces. Gateway Corridor activities and uses, buildings and parking. Pedestrian circulation should be accessible to the handicapped. The pedestrian experience should be reinforced through the use of street furniture and landscaping as specified in Section 3.1 and 3.7 below.
2.4 Bicycle Circulation

Issue: Bicycle riding is a popular and growing form of transportation and recreation in Port Townsend. Many bicyclists ride long distances to a destination of the Historic District and/or the Ferry. Integration of a bicycle route into the Gateway Corridor would add to the richness and diversity of the corridor, and enhance the recreation of cyclists.

Guideline: The City should develop a safe and well-defined bike route along the Gateway Corridor. In support of this, new development is encouraged to provide places for cyclists to stop along the corridor, as well as bike parking near parks, shops and viewpoints. The bike route should connect through to other residential and park destinations, as well as trail systems proposed in and around Port Townsend.

CORRIDOR CHARACTER

3.1 Topography and Vegetation

Issue: Natural amenities are the cornerstone of good design. Urban areas, while intrusive to natural systems, can be built in harmony with the surroundings. The Gateway Corridor includes many of the natural elements that give Port Townsend its character. Because the alteration of the natural environment will continue as more development occurs, it is important to restore a landscape that is in concert with the natural environment. Recognizing topographical opportunities and retaining existing vegetation are beginning points for good design. Good planning also recognizes that certain features are required that make the Gateway Corridor work better functionally and economically—and may require modification of natural features to make it work.

Guideline: New development should recognize the subtle topological features and native vegetation in the Gateway Corridor and develop new landscape, pathways, activities, and civic places that protect and enhance these features. All new development should provide vegetation along streets and pathways to reinforce the form and function of the vehicle and pedestrian network. All development should maintain and enhance existing plantings and trees located parallel to, and set back from, Sims Way and provide a backdrop for the buildings along the Gateway Corridor.
3.2 Parks/Open Space

Issue: Capitalizing on the opportunities for parks and open space is an integral part of the Gateway Corridor. Recognition and improvement of these resources contributes to the pedestrian environment. Parks and open space lend yet another layer of richness to the multiple activities of the corridor as well as improve the quality of the environment. Opportunities include protection and enhancement of tree-lined roads, ravines, viewpoints, and development of interesting intersections.

Guideline: The design of new buildings, walkways, and landscape elements should enhance and develop existing parks, viewpoints, ravines and other open space elements, and foster access to these natural areas. Designs should provide lighting, furniture, and landscaping in a way that natural areas and open spaces can be used in a safe and secure manner.

3.3 Viewpoints and View Corridors

Issue: Many towns and cities are the result of a simple plat of public rights-of-way and property between rights-of-way. More successful towns and cities have historically been "designed". The Gateway Concept creates linear relationships, street hierarchies, and activities that protect or enhance existing viewpoints and view corridors. Incorporating natural and built features with the vehicular circulation system, and reinforcing those relationships through view corridors, pedestrian links, viewpoints and other features, adds to the design quality of the Corridor and helps to define and protect the character of the districts and rooms. View corridors identified below should be protected as new development occurs.

Guideline: Recognize existing potential linear relationships of places and buildings. Using buildings or monuments strengthen and extend, or complete and terminate, existing and potential linear relationships.
3.4 Visual Linkages

Issue: Visual experiences are a distinguishing feature of Port Townsend. Key to the comfort of using the Gateway Corridor is the feeling of knowing where you are, and the relationship of the place you are occupying to landmarks or orienting features. The visual connection of the user to his/her surroundings can be as important as a physical connection in developing a welcome and comfortable ambience within the Gateway Corridor.

Guideline: Designs should include and blend visual and physical connections between pedestrian spaces, geographic and landscape features, and other landmarks, which encourage easy and inviting movement between adjoining spaces. Designs should protect views and orient the user within the Gateway Corridor and Port Townsend.

3.5 Markers

Issue: The Gateway Corridor should have indicators to the visitor and resident that orient and give definition. Markers that introduce people to the Corridor, or tell them where they are in the Corridor, are significant signposts that add to the character and ambience. Markers can be a combination of geographic features, landscape, monuments, signs or buildings. Further development of markers can add to the ongoing development of character and place of the individual districts along the corridor.

Guideline: Design markers along the roadway should have a character and scale appropriate to the Gateway Concept. Markers such as significant buildings should be designed to reinforce the beginning or end of a District by utilizing architectural elements, i.e., towers or roof features. Landscaping should also reflect the “marker” characteristic by transitions from individual street trees to groupings of conifers and other natural vegetation.
3.6 Signage and Lighting

Issue: Cities and towns are built over time. In the case of Port Townsend, a turn of the century port has become a major visitor destination. As the Corridor begins to develop and mature, both "feature" buildings and "background" buildings will give character to the ensemble of buildings in the landscape. While buildings will vary, repeating similar and recognizable elements gives a sense of cohesiveness to otherwise disparate building designs. Signage and lighting are key elements that can help to build identity and a cohesiveness into the Gateway Corridor. The Port Townsend Sign Code, enacted in 1986, should be updated to implement the signage guidelines of the Gateway Concept Plan. The Planning Commission recommended a specific updating ordinance in November, 1990. The City Council is expected to consider the updated sign code in March, 1991. Lighting should be functional, low maintenance, and oriented to the use. Streets should be classified as to use and type of movement, and lighting designed to enable that use and movement; arterials should be lit for safe and secure movement of vehicles; and streets and ways internal to the Gateway Corridor should be lit for pedestrian comfort and safety.

Guideline: Signage should be in accordance with overall Gateway Corridor standards and adopted sign regulation of the Port Townsend Municipal Code, which specifies size, location and type. Design lighting for safe and secure operation of vehicles, with special care given to creating lighting that enhances pedestrian safety at intersections, road crossings, and along pathways.

3.7 Street Furniture

Issue: The Gateway Corridor needs to have a separate identity as a sequence of "places" within Port Townsend. The construction of buildings and open space improvements will gradually evolve an identity, but the incorporation of accessories of common and unique design in public and private development will give immediate identity to the Corridor. Common design of benches, trash containers, newspaper stands, tree grates, sign stanchions, street lights, bicycle racks, and other elements of the streetscape will give a sense of unity and purpose to the Corridor.

Guideline: Street furniture, lighting and signage should be designed in accordance with the character and predominant theme of the district in which it is located. All streetscape improvements should be assessed for their long-term operation and maintenance costs.

BUILDINGS AND SITE DEVELOPMENT

4.1 Site/Building Organization

Issue: The mass and bulk of new buildings to be constructed in the Gateway in Port Townsend will vary according to the demands of the private marketplace. The character of the Corridor, however, could be greatly affected by the size, height and setback of new structures. The Corridor concept assumes that the majority of new construction would be one to-two stories in height, whereby the placement of the building and the overall site organization become critical. The site should be organized in a hierarchical relationship of customer use to service function. New development should begin at the front yard setback line and incorporate parking to the side of the building. The location of the building and a front, low landscape buffer and deciduous street trees should be used to define the public right-of-way. Vehicle service areas should be to the rear of buildings, with service elements (garbage, power) shielded by fences or landscaping. The rear of the property should have a tall conifer trees 15 ft. buffer as a backdrop to the development.

Guideline: Maintain a maximum building height of three stories throughout the Gateway Corridor. Require appropriate building setbacks, and use building and landscape to define public rights-of-way. Organize the site in a hierarchical arrangement from building to backdrop, as illustrated below. Provide screening for service elements and mechanical equipment on rooftops to block view from street and neighboring properties.
4.2 Building Form

Issue: Individual buildings are basic elements of the Gateway in Port Townsend. To date, buildings have been designed as "stand-alone" structures. New construction in the Corridor should be a combination of "stand-alone" structures and "background" buildings that weave together to form the streets and public spaces, defining boundaries, volume, and character. "Stand-alone" buildings should be used for special places or functions in the Gateway Corridor structure. "Background" buildings should be used for supportive mixed uses for the Corridor, supporting retail, commercial, and office.

Guideline: Single-purpose buildings should be treated as "stand-alone" structures with style and size appropriate to the use. "Mixed-use" buildings should be treated as "background buildings," which contribute to the context of the Corridor, and the streets and public spaces they define. All new development should be a "good neighbor" to adjacent existing buildings.

4.3 Building Character

Issue: The Historic District and "uptown" buildings have a unique architectural quality based on traditional design principals. The existing Gateway area is a conglomeration of styles and types of structures that have been built over a span of years, unimpeded or influenced by the historic context of the early city development. As such, the building design quality varies greatly, with some buildings being quite successful while others do not contribute to Port Townsend's sense of place (or historic architecture). It would be wrong to superimpose a "style" or "period" requirement on Gateway development or redevelopment, but the basic design principles inherent in historic architecture should be followed. Key issues to be considered:

1. Modularity: repetitive facade elements;
2. Form: rectangular facades;
3. Proportion: vertical window breakup;
4. Detail: developed form the "craft" of construction;
5. Roof or Cornice: separate element terminating the wall, not dominating the structure;
6. Wall: importance of the facade wall as the dominant element of the building;

Guideline: New development and remodeling should recognize the city's historic architectural heritage through the use of building materials, building proportions, forms, and details, and other architectural devices compatible with those design principles inherent in historic architecture, without replicating historical buildings.

4.4 Transitions

Issue: Building and open space designs are frequently oriented to a specific site, without a great deal of thought or analysis of the effect of the design on neighboring properties. Design attention should focus on transitions between different buildings. The edges of the Gateway Corridor are undefined. Buildings along the Gateway Corridor should define the street and promote a pedestrian/friendly shopping activity, and also serve as a
Guideline: Design buildings that create appropriate transitions to neighboring properties, both within and adjacent to the Gateway Corridor. Appropriate transitions are defined as those which do not have an abrupt change in architectural style, building massing, volume and height.

4.5 Inside and Outside

Issue: In retail areas, there is a zone of sensory interaction between the outside pedestrian system and the inside retail activity. This zone of activity requires shop windows, showcases, displays, entries and other devices that are designed not only for the functional need of the retailer, but also to enrich the experience of the person passing by. Design attention relative to the interaction of pedestrian and retail activities will enhance the pedestrian experience and increase the economic viability of retail operations.

Guideline: Encourage retail development that presents an interesting and enticing storefront to the adjacent sidewalk and street. Blank walls (walls without windows, showcases, displays and pedestrian entries) should not be allowed in any first-story building wall abutting public pathways, except as required for the structural integrity of the building. Service elements for buildings and storage yards should be placed away from pedestrian ways, preferably to the rear of properties and screened with physical barriers or landscape.

4.6 Building Entrances

Issue: Buildings containing more than one use require separate entrances for each use. Where offices and housing are located above retail space, care should be taken to place entrances to uses, other than retail, in locations that do not disrupt the flow of retail space as perceived by the pedestrian. In buildings containing only one use, entrances should be open and well-lighted to indicate points of access to the pedestrian. All building entrances should be accessible to parking, but be oriented to pedestrian areas.

Guideline: Entrances should be created in groupings, visually accessible from each other. Buildings which have more than one entrance should create a grouping of entrances, with design focus on the main entry. Where applicable, locate entrances to upper floor uses so as not to conflict with street level retail continuity.
Route Development Plan

Purpose:

The purpose of this task was to prepare a joint City-State Route Development Plan for SR-20 within the Port Townsend City Limits. This plan defines recommended physical, operational, and safety-related improvements that will enhance the effectiveness and capacity of this section of SR-20. Special emphasis was given to the development of an access management plan element to assure an appropriate level of access to abutting properties, appropriate with the intended functional and operational characteristics of the roadway.

Activities:

1. This task began with a comprehensive assessment of existing transportation-related conditions on SR-20 within the study area. A data base was developed describing the physical, operational, land use, traffic safety, and travel characteristics within the study area. The types of data included within this data base include the following:
 - Physical characteristics data, including pavement width, right-of-way width, cross-section design, and minimum roadway design standards.
 - Operational characteristics data, including the current and planned functional classification, the location and type of signalized intersections, the location and type of all stop-controlled intersections, the average daily traffic volumes on all major street segments, vehicle classification characteristics, morning and evening peak hour turning movement volumes, weekday and weekend traffic profile characteristics, and ferry-related travel behavior.
 - Land use characteristics data, including the existing type and intensity of land use, the proposed type and intensity of land use, the location and size of open space areas, wetlands, floodplains, residential areas, and otherwise undevelopable or environmentally sensitive areas.
 - Traffic safety characteristics represented by accident data for the most recent available three-year period and categorized according to the date, type, and severity of the accident.
 - Pedestrian and bicycle characteristics data, including both the volume and pattern of movements.
 - School bus activities, including the routes used, the frequency of movements, and the times at which the movements occur.
 - Parking characteristics, including an inventory of available on-street and off-street parking spaces by location and duration, average turn-over rates, and parking accumulation profiles.
 - System-wide travel characteristics, including travel time and delay data for important point-to-point travel routes, and current origin-destination patterns for traffic traveling within the study area.

2. Concurrent with developing the above data base, representatives of the Consultant Team met with City, County, and WSDOT officials to identify all committed or planned roadway improvement projects within the project vicinity which might affect traffic flow patterns or operating conditions, assuming that the Route Development Plan meshes appropriately with planned improvements.

3. Evaluation criteria were defined to establish existing system deficiencies and identify appropriate mitigation measures and system alternatives. These criteria were established through discussions among Consultant Team and City staff, and included the following:
 - Traffic conditions, including capacity, level of service, circulation characteristics, and separation of local traffic from through traffic.
 - Street pattern definition, including its clarity and its usability.
 - Support for other transportation modes, including transit, pedestrian, and bicycle movements.
 - Preservation of valuable resources, including open space, wetlands, historic-buildings, and residential areas.
 - Visual characteristics, including the road as viewed from the outside, the road as viewed from the inside, and the views outside the road.
 - Cost, including both operational and construction costs.

4. Future travel demand estimates were prepared, focusing upon the evening peak hour conditions since this is typically the time period when the greatest total one-hour travel demands of the day occur. These estimates were estimated, including the vehicle trip generation potential of various land use categories, vehicle trip distribution characteristics, and vehicle trip assignment characteristics. For the purposes of this study, total buildout conditions were assumed for the study area. This assumption helps to assure that the resulting street improvements are sufficient to accommodate the anticipated maximum development level.

5. Alternative roadway improvement scenarios for the vehicular, pedestrian, bicycle, ferry, and parking systems within the study area were defined that met the project goals and objectives. An initial identification of traffic considerations was developed through a workshop session involving Consultant Team members, the Gateway Steering Committee, business representatives along SR 20, City of Port Townsend staff, and WSDOT officials. The workshop reviewed existing conditions, projected travel and parking demands, and identified deficiencies. A series of factors that warranted further investigation was identified. These alternatives, at a conceptual level, appeared capable of being practical and effective techniques for mitigating existing and projected system deficiencies.

6. Each alternative was evaluated based upon project objectives, evaluation criteria, and engineering standards. During the course of the analysis, design elements were identified which do not satisfactorily address one or more of the evaluation criteria. In such instances, attempts were made to refine the alternative in a way that resolved these outstanding concerns. The analysis included, but was not limited to, the following issues: operational adequacy of key intersections and road segments; the adequacy and proximity of parking; potential for pedestrian/vehicle/bicycle conflicts; sense of place and character considerations that could be developed; and potential for impacts on adjacent residential neighborhoods.

7. Based on the results of the above activities, a Route Development Plan was prepared which is intended to meet the project goals, objectives, and minimum standards. The Plan defines recommended physical, operational, and safety-related improvements that will enhance the effectiveness and capacity of this section of SR-20. The Plan also includes an access management element to assure an appropriate level of access to abutting properties, given the intended functional and operational characteristics of the roadway.

Product: The product of this work is the Transportation Analysis appended to this report. This analysis has been submitted to Washington DOT. It is intended to lay the foundation for future traffic-related improvements by DOT. Specific recommendations regarding right-of-way improvements are summarized and included in the Gateway Development Plan as described in Sections 3 and 4 of this report.

Streetscape Development Plan

Purpose: The Streetscape Development Plan includes design recommendations along the SR 20 corridor that, with the technical aspects produced in the Route Development Plan, provide operational characteristics as well as the look and feel of the Gateway Corridor. Streetscape elements include, but are not limited to, curbs, driveways, intersections, sidewalks, landscaping, streetlighting, transit shelters, furniture and receptacles, signage and orientation systems.

Activities:

1. The initial task was a visual inventory and analysis of the three mile length of the SR 20 Corridor. The visual inventory includes the following:
The overall visual environment composed of urban, topographic, vegetative, open space and water elements, extending beyond the project boundaries.
- The specific scale and character of the districts which are made up of many complex details, forms, patterns and textures of both the natural and constructed urban elements.
- Data regarding critical views to natural features or significant architectural landmarks, locating objectionable visual areas which may require screening or finding opportunities to use landscape plantings to enframe or focus a distant view.
- Location of significant viewpoints, such as the first glimpse of the Port Townsend Bay at the stop of the "S" curves.
- The visual analysis builds from the inventory information by describing the opportunities as to how landscape plantings or building masses of the urban fabric can influence the views to be opened up, screened or enhanced. The visual analysis is a key step for treating criteria and setting the stage for decision making relative to the Streetscape Development Plan and creation of a "sense of place" through the design guidelines for each district.

2. In tandem with the visual inventory and analysis, base maps were developed for the three mile SR 20 corridor that were used to record information regarding land use, development characteristics, environmental sequences and the current state of improvements.

3. Based on the physical and visual inventories, and the Route Development Plan, the Consultant Team worked with the Gateway Steering Committee in a workshop session to refine and redefine the districts identified during the Charette process. At the conclusion of this step, the Consultant Team established a list of characteristics (existing and desired) for each district with specific district development recommendations addressing the character of new and ongoing development in the district.

4. From the district development guidelines, the Consultant Team developed prototype Streetscape sections appropriate to each district, identified sub-districts, and transitions between districts. These prototypes were expanded into visual simulation models that illustrate "how it would look" for sections of SR 20 and abutting properties.

5. The prototype sections are the basis for cost estimates appropriately broken down for use by the City. Cost estimates are developed by incremental length of improvement along the corridor.

Products: The product of this work is a visual inventory and analysis with resulting Streetscape recommendations summarized in the Gateway Development Plan described in Sections 3 and 4 of this report. Both the Visual Analysis and Streetscape Plan are appended to this report.

Design and Development Guidelines

Purpose: The Design and Development Guidelines provide the necessary tools for the creation of public and private partnerships required to realize the vision of the Gateway Project as it was envisioned at the Gateway Charrette. The Guidelines are the roadmap for future development and will help to implement the Gateway Development Plan. The Guidelines are performance oriented, rather than prescriptive, to illustrate intent while maintaining flexibility to respond to specific economic, market and functional conditions.

Activities:
1. Elements that are considered in the creation of Design and Development Guidelines include the following:
 - Gateway Charrette Statement of Purpose
 - Material, concepts and ideas recorded in the Gateway Concept Plan Report (Charrette Report)
 - District boundaries, sub-district identities
 - Mixes of uses (retail, mixed commercial, auto-oriented, office, residential, open-space, cultural facilities)
 - Expected development densities
 - Pedestrian circulation system and designation of pedestrian-oriented areas
 - Vehicular circulation and access system (through and local traffic, key intersections, transit, bicycles)
 - Visual environment and view corridors
 - Open space plan
 - Urban form (maximum and minimum building heights, massing, bulk, setbacks)
 - Parking (short term and long term, visual impact mitigation, orientation, flow, relationships to streets and buildings)
 - Detail design

2. In concert with the Gateway Development Plan, the Consultant Team created a set of Design and Development Guidelines to guide new development or assist existing properties in incremental upgrading efforts. These design guidelines are both general and exact, building upon the Gateway Charrette and further refined based on the work of this study.

Products: The Design and Development Guidelines, when adopted, form the basis for public and private development decisions for the Gateway Corridor. A specific Design Review Process should be instituted as part of the ongoing administration of permits by the City of Port Townsend.

6.2 APPENDIX: ROUTE DEVELOPMENT PLAN

ROUTE DEVELOPMENT PLAN
for the
PORT TOWNSEND GATEWAY STUDY PORT TOWNSEND, WASHINGTON
Prepared for
Stastny Architects pc
813 Alder Street, Suite 200
Portland, Oregon 97205
Prepared by
Kittelson & Associates, Inc.
512 SW Broadway, Suite 220
Portland, Oregon 97205
(503) 228-5230

December 1990
Project No.: 416.00

INTRODUCTION

PROJECT DESCRIPTION

The purpose of this analysis is to assess existing and future traffic conditions and develop recommendations along the SR20 Corridor within the City of Port Townsend to constitute a Route Development Plan for the Port Townsend Gateway Project. State Route 20, known as Sims Way for most of its length within PC Townsend, acts as the main gateway to the city; it is the only highway leading in Port Townsend and the only vehicular route into town other than two local roads across the Quimper Peninsula and the ferry from Keystone on Whidby Island.
The City of Port Townsend inaugurated this project to develop a plan for the Gateway Corridor, recognizing the need to manage growth there, make road improvements to foster traffic flow and safety, improve access to the upper commercial district, protect bicycle and pedestrian movement, and improve the visual image of the city. Sims Way has experienced considerable traffic growth recent years such that it has become increasingly difficult for vehicles or pedestrians to cross this road or for vehicles to make left turns at many locations. In addition, was recognized that the lack of curbing or other limitations to driveway access w becoming a safety problem as well as conveyed a confusing image to visitors.

SUMMARY OF ANALYSIS FINDINGS

Major conclusions this analysis reached were:

1) Traffic levels along SR20 in Port Townsend have grown substantial during the 1980's to the point where existing traffic control devices and even roadway geometrics are becoming insufficient to handle traffic safely and efficiently.

2) Future traffic levels, even under the most conservative assumptions, will beyond that point, requiring an estimated $3.4 million of improvements including a series of traffic signals and roadway widening to add median left-turn lane.

3) Should traffic grow at the rate it has over the past decade, widening to a five-lane roadway would be required west of Sheridan Street, if not west of Kearney Street, if acceptable peak hour conditions in the summer.

4) The improvements recommended in this plan would grant every major intersection a level of service of "C" or better in summer peak hours with the assumed level of traffic growth. Without these recommended improvements several major intersections would fall to a level of service of "E" or "F". Had a traffic growth factor reflective of recent history been used, the recommended improvements would be necessary simply to maintain a minimal "D" level of service at intersections which otherwise would certainly be at "F".

5) The existing conditions for bicycle and pedestrian movement are poor, it is problematic to cross the roadway for much of the day and marginally safe to move along the side of it given the lack of a continuous shoulder, bike lanes, or sidewalks.

6) Visitors experience confusion and drive unnecessarily longer distances due to the poor placement of signage along Sims Way.

7) Traffic safety is compromised at several intersections due to poor sight distance, the uninterrupted stream of cars, excessive speed of Sims Way traffic, and the lack of signalized control. These problems at the Mill Road intersection cause tractor trailers to use the Thomas Street intersection instead, adding to their mileage and traffic congestion on Sims Way.

8) Access to businesses in the upper commercial district is largely undefined and unrestricted, which, combined with the uninterrupted through traffic, leads to inferior access in this district and will have economic impacts.

9) Residents are making increasing use of local streets to avoid Sims Way however, there is a shortage of alternative, parallel routes such traffic can take.

MAJOR RECOMMENDATIONS

The major recommendations identified in this report are as follows:

1. Signalization is recommended to be installed prior to 1995 at the realigned Sims Way intersections at Haines Street/Safeway, Sheridan Street/Castle Hill, and Mill Road. Signalization is also recommended for possible 1995-2000 installation at the realigned Sims Way intersections at McPherson/Thomas Streets, Hancock Street, and Washington Street.

2. Left Turn Lanes are recommended to be constructed along Sims Way between the proposed Industrial Park and Thomas Street, between Hancock and Sherman Streets, and between Benedict and Kearney Streets.

3. Continuous Shoulder Lanes are recommended for all of Sims Way, with a westbound climbing lane, separated from a bicycle and pedestrian shoulder path, to be constructed in the "S" curve section.

4. Realignment of Major Intersections is recommended at Haines Street/Safeway, Sheridan Street/Castle Hill, McPherson/Thomas Street, and Mill Road.

5. Access Consolidation and Control is recommended for all of Sims Way, with municipal codes for building setbacks, transit easements, and an access control ordinance recommended.

The report also includes recommendations on signage, pedestrian and bicycle safety, access limitations at specific properties, raised medians, and public transportation.

EXISTING CONDITIONS

TRANSPORTATION FACILITIES

Port Townsend, with a population of about 6,800, lies at the mouth of Puget Sound, 46 road miles east of Port Angeles, 20 road and ferry miles southwest of Oak Harbor, and 50 road and ferry miles northwest of Seattle. Figure 1 shows Port Townsend's location within the Puget Sound region of Washington State. Port Townsend is the county seat of Jefferson County, which has a population of roughly 18,600.

The City of Port Townsend has a street system laid out on a nineteenth century rectangular grid. Only some of the platted streets have actually been constructed and few have been built to form continuous roads. Hence, the few roads which are long or cut across this grid pattern are of great importance to local circulation. Figure 2 shows the layout of major roads within the study area. All have only two through lanes with marginal shoulders. Of prime importance in the study area is Sims Way itself, originally constructed in the 1920's. The other road not platted as part of the rectangular grid. Discovery Bay Road, forms an important secondary route. Discovery Bay Road, along with SR20 and Hastings Street north of the study area, are the only roads connecting Port Townsend with the rest of the country. Other important secondary routes are McPherson, Thomas, Sheridan, Cherry, Washington, Lawrence, 12th, 19th, and Kearney Streets as well as San Juan Avenue.

Sims Way has been largely built as a rural highway. It has two through lanes, each 12' wide; in places it has a third 12' lane for left-turn storage. The highway shoulder varies in width from one to eight feet, in places becoming a right-turn acceleration or deceleration lane, serving as a westbound climbing lane for most of the "S" curve section, and in other places almost disappearing. There are no sidewalks along Sims way west of the Kearney Street intersection and in places the highway shoulder squeezes to being less than a foot wide, constituting meager pedestrian or bicycle right-of-way. The lack of defined and limited access to properties results in wide gravel and asphalt strips along the highway through which vehicles meander to get on and off SR20. This wide open strips crossed by vehicles at different angles present similarly unsafe environments for pedestrian or bicycle traffic. They also are potentially unsafe for vehicular traffic. There is only
one traffic signal on the entire stretch of Sims Way, at the Kearney Street intersection and no flashing beacons. There are two more traffic signals on Water Street, which Sims Way runs into. Other than these signals, traffic control is entirely maintained by stop or yield signs. There is no curbside parking along SR20. An inventory of existing parking along the corridor is included as Appendix "A".

Ferry service is important to Port Townsend. There are three ferry companies now operating service to Port Townsend. By far the largest is the long-established vehicular ferry of by Washington State Ferries between Port Townsend and Keystone on Whidby Island. This ferry constitutes a maritime continuum of SR20. The other ferry is the Puget Sound Express, a private 45-passenger-only ferry which goes to Friday Harbor on San Juan
Other public transportation in Port Townsend consists of taxi and local bus services. There is one major taxi company, Key City Transport. There is also a local bus system, Jefferson Transit, which operates two local routes within Port Townsend and a few more connecting Port Townsend with other points in Jefferson County and to Greyhound service at Port Ludlow. Figure 3 shows the public transportation system within the study area. It consists of a few County bus routes along SR20 itself (including the route linking to Greyhound) plus two City routes, both of them one-way loops within Port Townsend. Just south of the city is the Jefferson County International Airport, which has private and charter air service and has recently been expanded.

Port Townsend no longer has any railroad service connecting it to the rest of the Olympic Peninsula. However, the Port of Port Townsend operates a rail barge slip connected by the old Seattle and North Coast Railway to the Port Townsend Paper mill.

Boating activity is an important feature of Port Townsend. The Port of Port Townsend operates a marina with 400 slips and a Boat Repair Yard within the study area (between the Haines and Washington Street intersections). The Port of Point Hudson operates a marina with 100 slips east of the study area near the eastern end of Water Street. A considerable volume of boats dock at Port Townsend, mostly recreational, but also fishing and freight craft.

Parking is adequate along virtually the entire corridor with underutilization of parking at the two major shopping center parking lots and several other points. An inventory of existing parking spaces is presented in Appendix A.

SPECIFIC INTERSECTION CONDITIONS

Along SR20 in Port Townsend are several key intersections. Specific observations on each are given below.

Mill Road -- The sight distance from the eastbound SR20 approach to Mill Road is about 450', obscured somewhat by trees and brush plus a "40 MPH" sign and the horizontal curvature. Other signs on this approach are "TRUCK ROUTE TO PAPER MILL" and "TRUCK XING". The sight distance from the westbound SR20 approach is greater. The distance to Jacob Miller Road is about 1,200-1,300'. The key problems at this intersection are the high speed of SR20 traffic, the entering turns by trucks from Mill Road which block the entire SR20 roadway, and die short connection to Discovery Bay Road.

Hancock Street -- The sight distance from the southbound (Hancock) approach obscured by a high, sandstone embankment with trees and brush on northwest corner by the Kosec Funeral Home. The sight distance westbound on Sims Way is over 500' and over 400' eastbound. The key problems at this intersection are the high speed of SR20 traffic, the difficulty in making left turns or crossing SR20, and the sight distance problem posed by the southwest corner embankment.

McPherson Street -- There is adequate sight distance both ways to along Sims Way. However, the view from McPherson Street is obscured to the east by trees and brush and intermittently to west by vehicles parked at Dis n' dat, either parking parallel to head-on parking or backing out from head-on parking. The key problems at this intersection are the high speed of SR20 traffic and the difficulty in making left turns or crossing SR20. McPherson Street is recognized by the City Circulation Plan as a key collector street.

Thomas Street -- The sight distance is adequate in both directions on Sims Way, about 700' to east and about 400' to the west (from the White Rose Antiques). The view is obscured intermittently to the east by vehicles parked at the Village Mechanic and at all times to west by the flower stand in front of car wash and by the paved embankment fronting the Silver Palace restaurant. The key problems at this intersection are the high speed of SR20 traffic, the entering turns by trucks from Thomas Street which block the entire SR20 roadway, and the difficulty in making left turns or crossing SR20. Thomas Street is recognized by the City Circulation Plan as a key collector street.

Castle Hill Center access -- The sight distance is adequate in both directions on Sims Way, about 300' to the east (about from Sheridan Street is) and about 700' to west. The view to this intersection from the east is somewhat obscured by Century 21 sign. As this is a right turn only "T" intersection, it operates without significant problems.

Sheridan Street -- The sight distance is marginal both ways along Sims Way, about 250' to the east and about 320' to the west (from about 30' west of Castle Hill Center access). The westbound view is obscured by high brush as well as by horizontal and vertical curvature. The eastbound view is obscured by the high, brushy embankment at the northwester comer (Century 21 building) and, to lesser extent, by horizontal and vertical curvature and signage. The key problems at this intersection are the difficulty in making left turns or crossing SR20, the poor sight distance, and the uphill grade southbound. There are a high volume of left turns made here during peak hours in spite of the difficulty in doing so. This demonstrates how important this intersection is. However, as through volumes grow on SR20, these left turns will have to queue longer or would become virtually impossible unless a traffic signal is installed. Sheridan Street provides access to the Jefferson General Hospital, Manresa Castle, and the County Fairgrounds and is recognized by the City Circulation Plan as a key collector street.

Kearney Street -- There is adequate sight distance both ways to along Sims Way. This is only one of two intersections along SR20 in Port Townsend which is signalized. The signal timing permits pedestrians and motor traffic to safely cross Sims Way as well as make left turns. This intersection basically functions well. Kearney Street is recognized by the City Circulation Plan as an arterial street and this intersection may be regarded as the prime one in Port Townsend.

Washington Street -- There is adequate sight distance both ways to along Sims Way. This intersection, while not signalized, benefits indirectly from the nearby signals upstream and downstream at Kearney and the Ferry Terminal. Therefore, substantial left turn movements are able to be made here from Sims Way during peak hours. However, the growth in traffic adds to the delay these left turns must face and is gradually making the eastbound left turn lane insufficient to store the waiting vehicles on it. That lane has the capacity to store only five vehicles. Yet queues of up to seven eastbound left turn vehicles were observed at this intersection in 1990. As more vehicles have to wait in the queue to make left, they will tend to block the through lane. While intersection presently functions well this is only because through volumes are still light enough to allow left turns without signalization. Washington Street is not recognized by the City Circulation Plan as a collector or arterial street. However, it does play an important function as a bypass route to Water Street. The importance of maintaining this eastbound left turn movement at Washington Street is underscored by the fact that if eastbound traffic cannot turn left there it must travel on Water Street into the historic downtown district before finding another left turn possibility.

Ferry Terminal -- There is adequate sight distance both ways to along Water Street. This is only one of two intersections along SR20 in Port Townsend which is signalized. The signal timing permits pedestrians and motor traffic to safely cross Sims Way as well as make left turns. This intersection basically functions well because it has only three approaches, is signalized, and handles the lowest through volume of any intersection in the study area. Exiting volumes leaving the Ferry Terminal are limited by the vehicular capacity of the Steel Electric Class vessels used on the route. These boats can accommodate a maximum of only 75 autos per trip and usually carry less. For this reason, the ferry has little impact on westbound peak hour flows. Volumes entering the Ferry Terminal have a storage capacity in the terminal dock itself equivalent to two full boatloads, about 130 vehicle spaces, including the toll booth lanes off Water Street. These ferry queues do back out onto Water Street at times, largely because they are not processed fast enough by the terminal's ticket selling system.
The Washington Department of Transportation provided accident data for SR20 in Port Townsend for the years 1985 through 1989. Figure 4 shows the number of accidents at key intersections along Sims Way for these years. The intersections with the most accidents were Sheridan, Haines, and Kearney Streets. Only one fatal accident occurred during these years; that was at the Sheridan Street intersection. No pedestrian accidents were recorded and only one bicycle accident. Nearly 64% of all accidents recorded on SR20 in Port Townsend were due to vehicles entering or leaving the roadway (36% of all accidents), sideswiping (5%), or rearing other vehicles (23%) -- all maneuvers or reactions to maneuvers usually relating to poor access control. The unlimited access granted by the wide gravel and asphalt strips along SR20 allow vehicles to enter and exit almost anywhere, creating a haphazard pattern for vehicular traffic. This is aggravated by the lack of a median left-turn lane so that left-turning vehicles frequently block the single through lane and through traffic pass them on the uneven shoulder. A couple of “STOP” signs on poles at intersection approaches amid these wide open strips are frequently driven over by vehicles and have to be propped up again.

The Washington Department of Transportation also conducted a speed survey of traffic on SR20 in Port Townsend in June 1988. This consisted of recording the passing speed of hundreds of vehicles during mornings in June 1988 at six different locations. The average speeds tended to decrease the closer traffic got to downtown, going from 50 mph east of Mill Road to 40 mph near Sherman Street to 32 mph at the junction of Water Street. All these averages exceed the existing posted speed limit, which was lowered since this survey was taken. At Sherman Street, 45% of the eastbound traffic was traveling above 40 mph. At Haines Street, 58% was. At Water Street, 72% of the eastbound traffic was traveling above 30 mph.

Based on the traffic safety data available plus local comments and observation, the major traffic problem areas were identified. Figure 5 shows these key problem areas identified along the corridor. It identifies the key intersections which are problematic as well as the two-lane Upper Commercial District strip where a left-turn lane is needed.

TRAFFIC VOLUMES

Traffic volumes were determined for July 1990 weekday peak hour conditions at key intersections along SR20. These volumes were based on a number manual counts taken for this and prior studies. These included peak hour traffic counts conducted in July 1990 by Kittelson and Associates, Inc. at the Mill, McPherson, Thomas, Hancock, Castle Hill, Sheridan, Haines, San Juan/12th, Washington, and Ferry Terminal intersections and by the Transpo Group in April and May 1989 at the Mill and Thomas intersections (Reference 1). They also included 6AM-6PM traffic counts obtained in June 1988 by the Washington Department of Transportation at the McPherson, Hancock, Sheridan, Haines, Kearney, and Washington intersections.

These counts showed the late afternoon as the period of heaviest traffic activity, especially 4-5 PM, but with traffic volumes heavy in all hours 1-6 PM. In contrast, morning volumes were quite lower; even the eastbound (inbound) flow was no higher in the morning peak hour than it was in the afternoon peak hour.

Figure 6 shows the July 1990 PM peak hour traffic volumes along SR20 July 1990, which were based on this data. As the figure shows, traffic volumes on SR20 tend to increase west from the downtown area. Westbound traffic, typically about 450 vehicles per hour near the Ferry Terminal, increases to about 630 approaching Haines Street and to about 830 as it leaves the upper commercial district. Eastbound traffic, typically about 570 vehicles per hour as it enters the upper commercial district, decreases to about 490 approaching Haines Street, and to about 490 near the Ferry Terminal.

Figure 7 shows the specific intersection turning movements for July 1990. Of particular note here are the key left turn movements made despite opposing traffic. These are heaviest at Mill Road, Sheridan, Haines, Kearney, and Washington Streets. There are substantial cross street volumes entering at Castle Hill, Sheridan, Haines, Kearney, and Washington Streets. Traffic exiting the Ferry Terminal was light and constituted only 5% of all westbound traffic on Water Street Traffic entering the Ferry Terminal was heavier but constituted only 15% of all eastbound traffic on Water Street. Ferry traffic accounts for less than 3% of all traffic exiting and 10% entering the city on SR20.

An estimate was also made of future traffic volumes in the year 2010. This estimate assumed a conservative rate of traffic growth, 2% per annum, applied to ever major intersection in the study area, with some allowance for areas where heavier development is likely. The conservatism behind this estimate was based on the desire to avoid projecting optimistic traffic volumes which might not be realized.

The Washington Department of Transportation conducted a speed survey of traffic on SR20 in Port Townsend in June 1988. This consisted of recording the passing speed of hundreds of vehicles during mornings in June 1988 at six different locations. The average speeds tended to decrease the closer traffic got to downtown, going from 50 mph east of Mill Road to 40 mph near Sherman Street to 32 mph at the junction of Water Street. All these averages exceed the existing posted speed limit, which was lowered since this survey was taken. At Sherman Street, 45% of the eastbound traffic was traveling above 40 mph. At Haines Street, 58% was. At Water Street, 72% of the eastbound traffic was traveling above 30 mph.

Based on the traffic safety data available plus local comments and observation, the major traffic problem areas were identified. Figure 5 shows these key problem areas identified along the corridor. It identifies the key intersections which are problematic as well as the two-lane Upper Commercial District strip where a left-turn lane is needed.

TRAFFIC VOLUMES

Traffic volumes were determined for July 1990 weekday peak hour conditions at key intersections along SR20. These volumes were based on a number manual counts taken for this and prior studies. These included peak hour traffic counts conducted in July 1990 by Kittelson and Associates, Inc. at the Mill, McPherson, Thomas, Hancock, Castle Hill, Sheridan, Haines, San Juan/12th, Washington, and Ferry Terminal intersections and by the Transpo Group in April and May 1989 at the Mill and Thomas intersections (Reference 1). They also included 6AM-6PM traffic counts obtained in June 1988 by the Washington Department of Transportation at the McPherson, Hancock, Sheridan, Haines, Kearney, and Washington intersections.

These counts showed the late afternoon as the period of heaviest traffic activity, especially 4-5 PM, but with traffic volumes heavy in all hours 1-6 PM. In contrast, morning volumes were quite lower; even the eastbound (inbound) flow was no higher in the morning peak hour than it was in the afternoon peak hour.

Figure 6 shows the July 1990 PM peak hour traffic volumes along SR20 July 1990, which were based on this data. As the figure shows, traffic volumes on SR20 tend to increase west from the downtown area. Westbound traffic, typically about 450 vehicles per hour near the Ferry Terminal, increases to about 630 approaching Haines Street and to about 830 as it leaves the upper commercial district. Eastbound traffic, typically about 570 vehicles per hour as it enters the upper commercial district, decreases to about 490 approaching Haines Street, and to about 490 near the Ferry Terminal.

Figure 7 shows the specific intersection turning movements for July 1990. Of particular note here are the key left turn movements made despite opposing traffic. These are heaviest at Mill Road, Sheridan, Haines, Kearney, and Washington Streets. There are substantial cross street volumes entering at Castle Hill, Sheridan, Haines, Kearney, and Washington Streets. Traffic exiting the Ferry Terminal was light and constituted only 5% of all westbound traffic on Water Street Traffic entering the Ferry Terminal was heavier but constituted only 15% of all eastbound traffic on Water Street. Ferry traffic accounts for less than 3% of all traffic exiting and 10% entering the city on SR20.

An estimate was also made of future traffic volumes in the year 2010. This estimate assumed a conservative rate of traffic growth, 2% per annum, applied to ever major intersection in the study area, with some allowance for areas where heavier development is likely. The conservatism behind this estimate was based on the desire to avoid projecting optimistic traffic volumes which might not be realized.
assumed level of traffic growth can be demonstrated by comparing it to the historical trends recorded in the area. The Washington Department of Transportation traffic counts made at the Washington Street intersection over the three-year 1985-1987 period recorded an average 18% per annum growth rate. The Washington Department of Transportation traffic counts made by their permanent recorder at the Route 101 junction with SR20 over the 1980-1988 period recorded an average 6.9% per annum growth rate. Vehicular ferry traffic on the Port Townsend-Keystone route grew an average 5.5% per annum between 1979 and 1989; between 1985 and 1989, the ridership for the month of July only grew an average of 7.5% per annum. The 2% growth rate is assumed for the peak hour traffic because of the tendency for traffic to avoid congested peak hours on congested routes and for traffic growth in these hours to lag behind daily and annual traffic increases. Peak hour traffic is likely to increase more on Discovery Bay Road and other underused routes within Port Townsend.

The estimate of future traffic volumes was not based on a standard trip generation analysis for the maximum development of land within Port Townsend. This is because the traffic growth in peak periods has been fueled more by tourism than by local development. Traffic peaks occur in summer. The average daily traffic (ADT) on Sims Way was given by the Washington Department of Transportation for 1988 as 11,000 in each direction at Hancock Street. Given the historical growth cited, ADT might be expected to grow at 4% per annum over the next twenty years, or to over 25,000 daily by 2010. A higher growth rate is assumed for daily traffic than peak hour traffic because of the tendency for traffic to avoid congested peak hours on congested routes.

Figure 8 shows intersection turning movements for July 2010. This estimate, which assumes 2% per annum growth, results in a general increase of about 50% in traffic volumes throughout the corridor. Note that if even a 4% growth rate had been used instead, this same level of growth would be reached by 2000, ten years earlier. Turning movement and cross street therefore would intensify at Mill Road, Sheridan, Haines, Kearney, and Washington Streets. They also begin to be a much more serious problem at McPherson, Thomas, and Hancock Streets.

Figure 9 shows intersection turning movements for July 2010 with recommended realignment and turn bans implemented at key intersections. This estimate assumes the same 2% per annum growth throughout the corridor but reallocates certain turning movements at the McPherson/Thomas intersection (the two are joined), the Castle Hill/Sheridan intersection (these two are also joined), as well as Kearney and Washington Streets. Signalization is assumed at all these intersections.

This analysis dealt with summer weekday traffic conditions because this is generally when the highest traffic levels occur and because traffic control devices and roadway design must be oriented to accommodate this peak level. Weekend summer traffic volumes in Port Townsend are also substantial. Seasonal traffic counts recorded by the Washington Department of Transportation along Route 101 at its junction with SR20 and along Route 104 at the Hood Canal Bridge suggest that non-summer traffic in the area is generally about 70% of the summer levels and only 50-60% of the summer levels in January and February.
TRAFFIC ANALYSIS

EXISTING TRAFFIC OPERATIONS

Level of service is a concept developed to quantify the degree of comfort (including such elements as travel time, number of stops, total amount of stopped delay, and impediments caused by other vehicles) afforded to drivers as they travel through an intersection or roadway segment. Recent research has determined that average stopped delay per vehicle is the best available measure of the LOS at a signalized intersection. As defined within the 1995 Highway Capacity Manual (Reference 2), six grades are used to denote the various LOS; these six grades are described qualitatively for...
For signalized intersections, LOS defines the quality of the traffic flow, but does not necessarily describe the overall design adequacy of the intersection to accommodate the traffic volumes being analyzed. As an example, a good LOS can be achieved even when the volume/capacity ratio for the intersection exceeds 1.0. Similarly, there are conditions under which a poor LOS is achieved even though the volume/capacity ratio for the intersection is well below 1.0. Therefore, all signalized intersection summary tables contained in this report provide both the calculated LOS and the calculated volume/capacity ratio for each intersection. In this way, the reader is provided with a complete description of the expected operation conditions for each signalized intersection that is analyzed. The City of Portland's requirement for Level of Service at signalized intersections outside the Central Business District (CBD) is that the major intersection approaches operate at a Level of Service "D" or better.

For unsignalized intersections, LOS is defined differently than for signalized intersections in that it is based upon the concept of "Reserve Capacity" (i.e., that portion of available hourly capacity that is not used). A qualitative description of the various service levels associated with an unsignalized intersection is presented in Table 3. A quantitative definition of LOS for an unsignalized intersection is presented in Table 4.

The reserve capacity concept applies only to an individual traffic movement or to shared lane movements. Once the capacity of all the individual movements has been calculated and their LOS and expected delays determined, an overall evaluation of the intersection can be made. Normally, the movement having the worst LOS defines the overall evaluation, but this may be tempered by engineering judgement.

Past experience with the unsignalized analysis procedure indicates that this methodology is very conservative in that it tends to overestimate the magnitude of any potential problems that might exist. Therefore, the results of any unsignalized intersection analysis should be reviewed with this thought in mind. Generally, LOS "E" is considered to be acceptable for an unsignalized intersection, although it also indicates that the need for signalization should be investigated. All LOS analyses described in this report were performed in accordance with the procedures described above.

Table 5 summarizes the results of the intersection LOS calculations for each of the key intersections during the typical 1990 summer evening peak hour. Signalized LOS only is shown; the need for signalization is explained in the Traffic Signal Warrants section. Signalized would result in a LOS of "B" or "C" for every intersection analyzed. This table also shows the intersection LOS results for the typical 1990 summer evening peak hour without signalization (i.e., the existing summer situation). All intersections were found to be at a LOS of "D" or "E". While Sims Way through traffic flows at a much better LOS, many movements across Sims Way, including some major left turns, are subject to considerable delay. The "D" or "E" ratings reflect those delays to minor street and left turn movements.

FUTURE TRAFFIC OPERATIONS

Table 6 summarizes the results of the intersection LOS calculations for each of the key intersections during the typical 2010 summer evening peak hour. Signalization would result in a LOS of "B" or "C" for every intersection analyzed. Between 1990 and 2010 several intersections drop from a "B" to a "C" in signalized LOS and all increase in the average amount of delay per vehicle. The table also shows the results of the intersection LOS calculations for the typical 2010 summer evening.
Table 1

LEVEL OF SERVICE DEFINITIONS (SIGNALIZED INTERSECTIONS)

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Traffic Flow Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Very low average stopped delay, less than five seconds per vehicle. This occurs when progression is extremely favorable, and most vehicles arrive during the green phase. Most vehicles do not stop at all. Short cycle lengths may also contribute to low delay.</td>
</tr>
<tr>
<td>B</td>
<td>Average stop delay is in the imp of 5.1 to 15.0 seconds per vehicle. This generally occurs with good progression and/or short cycle lengths. More vehicles stop than for LOS A, causing higher levels of average delay.</td>
</tr>
<tr>
<td>C</td>
<td>Average stopped delay is in the range of 15.1 to 25.0 seconds per vehicle. These higher delays may result from fair progression and/or longer cycle lengths. Individual cycle failures may begin to appear in this level. The number of vehicles stopping a significant at this level, although many still pass through the intersection without stopping.</td>
</tr>
<tr>
<td>D</td>
<td>Average stopped delays are in the range of 25.1 to 40.0 seconds per vehicle. The influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle length, or high volume/capacity ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.</td>
</tr>
<tr>
<td>E</td>
<td>Average stopped delays are in the range of 40.1 to 60.0 seconds per vehicle. This is considered to be the limit of acceptable delay. These high delay values generally indicate poor progression, long cycle lengths, and high volume/capacity ratios. Individual cycle failures are frequent occurrences.</td>
</tr>
<tr>
<td>F</td>
<td>Average stop delay is in excess of 60 seconds per vehicle. This is considered to be unacceptable to most drivers. This condition often occurs with oversaturation. It may also occur at high volume/capacity ratios below 1.00 with many individual cycle failures. Poor progression and long cycle lengths may also be major contributing causes to such high delay levels.</td>
</tr>
</tbody>
</table>

Table 2

LEVEL-OF-SERVICE CRITERIA FOR SIGNALIZED INTERSECTIONS
Table 3
General Level of Service Descriptions for Unsignalized Intersections

<table>
<thead>
<tr>
<th>LOS</th>
<th>General Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Nearly all drivers find freedom of operation</td>
</tr>
<tr>
<td></td>
<td>Very seldom is there more than one vehicle in the queue</td>
</tr>
<tr>
<td>B</td>
<td>Some drivers begin to consider the delay an inconvenience</td>
</tr>
<tr>
<td></td>
<td>Occasionnally there is more than one vehicle in the queue</td>
</tr>
<tr>
<td>C</td>
<td>Many times there is more than one vehicle in the queue</td>
</tr>
<tr>
<td></td>
<td>Most drivers feel restricted, but not objectionably so</td>
</tr>
<tr>
<td>D</td>
<td>Often there is more than one vehicle in the queue</td>
</tr>
<tr>
<td></td>
<td>Drivers feel quite restricted</td>
</tr>
<tr>
<td>E</td>
<td>Represents a condition in which the demand is near or equal to the probable maximum number of vehicles that can be accommodated by the movement.</td>
</tr>
<tr>
<td></td>
<td>There is almost always more than one vehicle in the queue</td>
</tr>
<tr>
<td></td>
<td>Drivers find the delays to be approaching intolerable levels</td>
</tr>
<tr>
<td>F</td>
<td>Forced flow</td>
</tr>
<tr>
<td></td>
<td>Represents an intersection failure condition that is caused by geometric and/or operational constraints external to the intersection.</td>
</tr>
</tbody>
</table>

Table 4
Level of Service Criteria for Unsignalized Intersections

<table>
<thead>
<tr>
<th>Reserve Capacity (pcph)</th>
<th>Level of Service</th>
<th>Expected Delay to Minor Street Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>>400</td>
<td>A</td>
<td>Little or no delay</td>
</tr>
<tr>
<td>300-399</td>
<td>B</td>
<td>Short traffic delays</td>
</tr>
<tr>
<td>200-299</td>
<td>C</td>
<td>Average traffic delays</td>
</tr>
<tr>
<td>100-199</td>
<td>D</td>
<td>Long traffic delays</td>
</tr>
<tr>
<td>0-99</td>
<td>E</td>
<td>Very long traffic delays</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>*</td>
</tr>
</tbody>
</table>

* When demand volume exceeds the capacity of the line, extreme delays will be encountered with queuing which may cause severe congestion affecting other traffic movements in the intersection. This condition usually warrants improvement to the intersection.

Table 5
Signalized Intersection Levels of Service, Summer 1990 Traffic, State Route 20, Port Townsend (PM Peak Hour)

<table>
<thead>
<tr>
<th>Intersection</th>
<th>LOS</th>
<th>Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mill Road</td>
<td>C</td>
<td>17.3</td>
</tr>
<tr>
<td>McPherson</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Thomas</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>McPherson/Thomas*</td>
<td>B</td>
<td>10.9</td>
</tr>
<tr>
<td>Hancock</td>
<td>B</td>
<td>9.1</td>
</tr>
<tr>
<td>Sheridan*</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Sheridan/Thomas*</td>
<td>B</td>
<td>12.0</td>
</tr>
<tr>
<td>Castle Hill*</td>
<td>B</td>
<td>13.2</td>
</tr>
<tr>
<td>Haines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersection</td>
<td>LOS</td>
<td>Delay</td>
</tr>
<tr>
<td>--------------</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>Mill Road</td>
<td>C</td>
<td>31.0</td>
</tr>
<tr>
<td>McPherson</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Thomas</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>McPherson/Thomas*</td>
<td>C</td>
<td>24.8</td>
</tr>
<tr>
<td>Hancock</td>
<td>C</td>
<td>19.2</td>
</tr>
<tr>
<td>Sheridan</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Sheridan/Castle Hill*</td>
<td>C</td>
<td>18.8</td>
</tr>
<tr>
<td>Haines</td>
<td>C</td>
<td>19.3</td>
</tr>
<tr>
<td>Kearney</td>
<td>C</td>
<td>20.7</td>
</tr>
<tr>
<td>Washington</td>
<td>C</td>
<td>21.8</td>
</tr>
<tr>
<td>Ferry Term</td>
<td>B</td>
<td>11.8</td>
</tr>
</tbody>
</table>

Delay=Average delay(seconds) for vehicles.

* Proposed Realigned Intersection

Table 7

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Traffic Signal Warrants Applied</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Mill Road</td>
<td>NA</td>
</tr>
<tr>
<td>McPherson</td>
<td>NA</td>
</tr>
<tr>
<td>Thomas</td>
<td>NA</td>
</tr>
<tr>
<td>McPherson/Thomas*</td>
<td>NA</td>
</tr>
<tr>
<td>Hancock</td>
<td>NA</td>
</tr>
<tr>
<td>CastleHill</td>
<td>NA</td>
</tr>
<tr>
<td>Sheridan</td>
<td>Marg</td>
</tr>
<tr>
<td>Sheridan/Grant*</td>
<td>Yes</td>
</tr>
<tr>
<td>Haines</td>
<td>Marg</td>
</tr>
<tr>
<td>Washington</td>
<td>Yes</td>
</tr>
<tr>
<td>Kearney</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* Proposed Realigned Intersection

Table 8

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Traffic Signal Warrants Applied</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Mill Road</td>
<td>Marg</td>
</tr>
<tr>
<td>McPherson</td>
<td>NA</td>
</tr>
<tr>
<td>Thomas</td>
<td>NA</td>
</tr>
<tr>
<td>McPherson/Thomas*</td>
<td>NA</td>
</tr>
<tr>
<td>Hancock</td>
<td>NA</td>
</tr>
<tr>
<td>CastleHill</td>
<td>Yes</td>
</tr>
<tr>
<td>Sheridan</td>
<td>Yes</td>
</tr>
<tr>
<td>Sheridan/Grant*</td>
<td>Yes</td>
</tr>
<tr>
<td>Haines</td>
<td>Yes</td>
</tr>
<tr>
<td>Washington</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* Proposed Realigned Intersection
peak hour without recommended signalization. All intersections except Thomas would be at a LOS of "E" or "F". While Sims Way through traffic may still be able to flow well, any movement across Sims Way, by vehicles or pedestrians, would be prohibitive. Intersections with a "F" LOS would include those providing access to the hospital (Sheridan) and major shopping center (Haines).

It must be emphasized that this analysis is based on a conservative 2% yearly traffic growth rate. Daily and annual growth rates actually recorded in the area have been much higher. If peak hour traffic grows at a 4% rate, intersection levels of service without recommended improvements would drop to "E" and "F" levels of service in about half the time. By 2000, both the Sheridan and Haines intersections would be at "F". Such traffic conditions on SR20, would lead to a much greater diversion of traffic to Discovery Bay Road and other alternative routes.

TRAFFIC SIGNAL WARRANTS

The traffic signal warrants analysis for 1990 and 2010 traffic conditions applied the guidelines set forth in the 1988 Manual of Uniform Traffic Control Devices (Reference 3). Five different warrant guidelines were applied. These were as follows:

The Minimum Vehicular Volume Warrant (Warrant 1 as described in Reference 3) sets forth minimum volumes for major streets of 350 vehicles per hour and for minor streets of 105 vehicles per hour if major street speeds exceed 40 mph.

The Interruption of Continuous Flow Warrant (Warrant 2) applies where major street volume (over 40 mph) exceeds 500 vehicles per hour while minor street volume exceeds 55 vehicles per hour. Both Warrants 1 and 2 are based on the eighth highest hour conditions, assumed here to be 70 percent of the peak hour traffic volumes. The use of 70 percent of the evening peak hour as the eighth highest hour of the average day is supported by numerous observations on arterial streets within the Portland metropolitan area.

The Systems Warrant (Warrant 7) standard is for total entering volumes on all approaches exceeding 1,000 vehicles in the peak hour and where Warrants 1, 2, 8, 9, or 11 are met.

The Four-Hour Volume Warrant (Warrant 9) sets forth minimum requirements for the fourth highest weekday hour. This is a check for volumes heavy enough to indicate substantial minor street delay and possible turning movement conflicts. The fourth highest hour is assumed here to be 80 percent of the peak hour traffic volumes. This use of 80 percent of the evening peak hour as the fourth highest hour of the average day is based on the 6AM-6PM traffic counts recorded by the Washington Department of Transportation at key Sims Way intersections.

The Peak Hour Volume Warrant (Warrant 11) sets forth minimum requirements for peak hour conditions where major street volumes are so heavy as to hinder minor street turns.

The results of this analysis for summer 1990 conditions are summarized on Table 8. The results for 1990 indicate that signalization is already warranted at the Mill Road, Sheridan, Haines, Kearney, and Washington Street intersections and is approaching marginal warrant conditions at Hancock Street and the Castle Hill access and would at a realigned McPherson/Thomas intersection. Of these intersections, Kearney Street already is signalized while Washington Street, being so close to Kearney, is to some extent influenced by this signal. As the Castle Hill access involves no left turns, this warrant analysis is largely inapplicable there. However, Mill Road, Sheridan Street, and Haines Street stand out as intersections where signalization is not now provided, even indirectly, and where it is clearly warranted for existing summer conditions. Signalization would also be warranted at the recommended, realigned Castle Hill/Sheridan intersection.

The results of this analysis for summer 2010 conditions are summarized on Table 8. The results for 2010 indicate that signalization will be warranted at the Mill Road, Hancock Street, the Castle Hill access, as well as the Sheridan, Haines, Kearney, and Washington Street intersections and would be approaching marginal warrant conditions at the McPherson and Thomas Streets. Signalization would also be warranted were these last two streets conjoined by the recommended, realigned McPherson/Thomas intersection as it would at the recommended, realigned Castle Hill/Sheridan intersection. Therefore, for summer 2010 conditions signalization would be warranted at all these intersections with the recommended configuration. It should be noted that this warrants analysis assumes the conservative 2% yearly traffic growth rate cited earlier. At an even slightly higher growth case, the case for signalization would be considerably stronger.

While the Washington Street intersection would continue to be somewhat influenced by the traffic signal at Kearney Street, the volume increase by 2010 would seriously weaken the ability of motorists to make left turns off of Sims Way onto Washington Street or to continue through on Washington Street, as motorist can presently in the peak hour. As the Castle Hill access involves no left turns, the warrant analysis would still be largely inappropriate, however, the higher 2010 volumes would impose much greater delay to right turns exiting Castle Hill. This could be solved were either Sheridan signalized or the access combined into a signalized Sheridan/Grant intersection. Therefore, signalization would appear unavoidable at all these intersections except perhaps McPherson and Thomas Streets. However, the overall requirements for signalization can be minimized by combining some intersections or by letting an upstream signal act to influence another nearby intersection. The latter strategy could be applied to McPherson and Thomas Streets and to Sheridan Street and the Castle Hill access.

TRANSPORTATION RECOMMENDATIONS

GENERAL RECOMMENDATIONS

Creating improved long haul transit access to Port Townsend should be encouraged so as to reduce the volume of vehicles entering the Quimper Peninsula. The Greyhound bus link should be maintained and enhanced with direct service to Port Townsend restored, if possible. Any ferry operation linking Port Townsend with Seattle, Victoria, and other cities could be encouraged as long as appropriate support facilities for pedestrians, bicyclists, or parking demands are met by the ferry service.

To handle the vast majority of visitors arriving in the area by auto, park-and-ride possibilities may be explored whereby they park their cars away from the downtown district and travel by foot, bicycle, or local bus within Port Townsend. This might well be sited either near the lagoon or near the Bus Depot on Hancock Street. Either site would be served by Jefferson Transit's existing bus routes. Tourists tend to travel in family groups with the average vehicle surveyed entering Fort Wordon containing 3.5 persons (the national average for intercity auto trips). The existing Jefferson Transit fare structure of individual fares per head would be less attractive to these groups than a family day pass, especially if offered free as pan of a book of tourist coupons.

Another park-and-ride possibility is to increase the size of the Keystone Ferry Terminal parking lot, enabling people to leave their cars there and not bring them to Port Townsend at all. Visitors must come by auto to Keystone as there is no connecting bus service to any point on the mainland. There is only infrequent Island Transit service between Oak Harbor and Clinton without a connection via the Clinton-Mukiltwo ferry to Seattle or Everett.
Another strategy to relieve traffic on SR20 is to foster alternative local routes. This is already happening as some locals have switched to 9th Street or Discovery Bay Road from SR20. While there will be more demand to do this, few local streets are now connected to allow such movement. One future possibility is to connect and extend 3rd and 4th Streets south of SR20 to form a continuous local route from Cleveland to Howard Streets. Such a route could then provide the direct access for new development in this portion of the corridor. Ninth Street could be extended from Sheridan to Discovery Bay Road while Discovery Bay Road itself will require adequate shoulders and other safety improvements as its traffic grows.

Several basic measures are recommended for the SR20 Corridor to increase the traffic capacity and improve safety. A target traffic level of service for 2010 of "D" was identified; the recommended improvements would grant every major intersection a level of service of "C" or better with the assumed level of traffic growth. Without these recommended improvements several major intersections would fall to a level of service of "E" or "F". While much of the recommended plan consists of signalization, this signalization plus widening would add only about two minutes to the overall peak hour travel time on SR20 in Port Townsend. The recommended improvements include the following generic measures:

Signalization of key intersections to break the constant flow of traffic while allowing left turns and cross street movements by vehicles and pedestrians;

Left Turn Lanes along most of Sims Way, allowing left turns to be made without blocking through traffic;

Longer One-Way Left Turn Lanes where feasible, allowing safer left turn movement and greater capacity for future movement;

Continuous Shoulder Lanes, allowing a zone for vehicles entering and exiting Sims Way as well as a safer bicycle and pedestrian path;

Grass Medians in places where the left turn lanes trail off, allowing safer pedestrian crossing points in between signalized intersections;

Sidewalks on much of Sims Way, where safer pedestrian movement requires such treatment;

Realignment of Major Intersections where it would improve safety, capacity, and local circulation;

Signage Changes to clarify where turns are made and what traffic regulations apply; and

Access Consolidation and Control, limiting the number of driveways on Sims Way and creating greater distance between driveways by means of curbing, shared driveways, and the use of side street access (described in detail in the Access management Plan).

APPLICATION OF GENERAL RECOMMENDATIONS

Signalization is recommended to be installed prior to 1995 at the Sims Way intersections at Haines Street/Safeway and Mill Road (and at Sheridan Street if the existing alignment is to be retained). Signalization is recommended for 1995-2000 installation at the realigned Sims Way intersections at Sheridan Street/Castle Hill and the proposed Industrial Park. Signalization is recommended for 2000-2010 installation at the realigned McPherson/Thomas Streets intersection as well as at Hancock Street and Washington Street. Signalization not only would create gaps in the continuous flow of traffic, allowing cross street and left turn movements, but would operate to moderate speeds and caution motorists to urban conditions. Signals operate best in a series, with coordinated timings.

Left Turn Lanes are recommended along Sims Way between the proposed Industrial Park and Thomas Street and between Hancock and Sherman Streets.

Longer One-Way Left Turn Lanes are recommended between Benedict and Washington Streets.

Continuous Shoulder Lanes are recommended for all of Sims Way, with a westbound climbing lane, separated from a bicycle and pedestrian shoulder path, to be constructed in the "S" curve section.

Grass Medians are recommended near the Water Street junction, at Benedict Street, and at any future sites where left turns are to be banned.
Sidewalks are recommended along the south side of Water Street (SR 20), along the south side of Sims Way between Water and Decatur Streets and between Hancock and McPherson Streets, and along the north side of Sims Way between Washington and Kearney Streets and between Cleveland and Hancock Streets.

Realignment of Major Intersections is recommended at Haines Street/Safeway, Sheridan Street/Castle Hill, McPherson/Thomas Street, and Mill Road.

Signage Changes are recommended for all of Sims Way, as specified on accompanying figures.

Access Consolidation and Control is recommended for all of Sims Way, with an access control ordinance recommended for the entire City. Recommendations for the consolidation of driveways and related measures are specified in the Access Management Plan.

Figure 10 shows the basic requirements these recommendations address for Year 2000 conditions. This figure shows that widening for a median left-turn lane and access control is required between Kearney and Benedict Streets and between Sherman and LaSalle Streets (or wherever the Industrial Park is to be located). This figure shows that widening for a westbound climbing lane is required between Haines and Sheridan Streets while traffic signals are required at Mill Road, the Industrial Park, a realigned McPherson/Thomas intersection, Hancock Street, a realigned Sheridan Street, Haines Street, and Washington Street. Also shown are possible local road extensions for alternative access by connecting 3rd and 4th Streets, forming a local route from Cleveland to Howard Streets and extending Ninth Street from Sheridan to Discovery Bay Road. Roadway improvements for Discovery Bay Road are also identified.

The measures identified with the highest priority are the signalization of Haines, Mill, and Sheridan Streets. The signalization of Sheridan Street is recommended to be concurrent with a proposed realignment, which may require it to be implemented later than these other two signals. However, planning and preliminary engineering for the proposed new roadway realignments at both the Sheridan and Haines Street intersections as well as the recommended roadway widening should begin soon.

Other priority measures for which implementation could begin soon are the access consolidation plan, faster ticket sales at the ferry terminal, as well as the recommended appropriate signage changes appropriate at this stage.

Figure 11 shows the proposed intersection conceptual realignments at four key intersections. These are explained later in the recommendations for each segment of SR20.

Figure 12 shows the basic requirements these recommendations address for Year 2010 conditions. In addition to the improvements recommended for 2000 in 10, this figure identifies two additional improvements. The first improvement is a four-lane section (with two westbound lanes) between Sheridan and Hancock Streets. If traffic grows at a higher rate than the 2% per annum assumed, a 4- or 5-lane section would be required for all of Sims Way west of Sheridan as well as some sections east of Sheridan. The second improvement is a possible rotary or other major realignment at the Mill Road intersection where SR20 almost meets Discovery Bay Road.

The capital costs for all recommended traffic improvements is estimated to exceed $3.4 million. These are shown in Appendix B. These cost estimates are both preliminary and conservative. They are preliminary as precise engineering surveys are required to determine the precise construction costs and related acquisition cost may also vary. They are conservative as they assume a modest 2% a year growth rate in peak hour traffic and a consequent minimal degree of roadway widening. If traffic grows more, additional widening would be necessary. These capital costs estimates do not include any assigned costs for off-road access consolidation, sidewalks, ferry terminal changes, or for improvements to Discovery Bay Road or other streets which do not actually intersect SR20.

Potential funding sources for these improvements are Federal Aid Urban Systems (FAUS) funds and other grants available through the Washington Department of Transportation, federal and state economic development and community development grants, developer Transportation Improvement Fees (TIFs), as well as county or city accommodation or other sales taxes.
Short term measures (signalization of Haines and Mill Streets plus installation of a flasher at Sheridan) are estimated to cost over $250,000. These measures are of the highest priority. The signalization of Sheridan Street would be on this list of short term measures were it not for its proposed realignment, which requires a longer time frame for implementation. Intermediate term measures for 1995 (those of the highest priority next to short term measures) are estimated to cost over $820,000. These 1995 intermediate term measures include signalization of Sheridan Street (the highest priority intermediate term measure) and the Industrial Park intersection plus installation of a flasher at Hancock as well as new roadway construction to realign both the Sheridan and Haines Street intersections and roadway widening between Sheridan Street and the Industrial Park. Therefore, measures recommended for implementation in this decade exceed one million dollars and are devoted largely to the Upper Commercial District.

The capital costs for intermediate term measures for 2000 are estimated to cost an additional $1,165,000. These 2000 intermediate term measures include signalization of Washington Street (the highest priority 2000 intermediate term measure), Hancock Street, and a realigned McPherson/Thomas intersection plus installation of a flasher at Discovery Bay Road/Mill Street. Also included for 2000 is new roadway construction to realign the McPherson Street intersection connecting it to Thomas Street and roadway widening on Water Street, between Decatur and Benedict Streets, between Haines and Sheridan Streets (the "S curve section", and at Discovery Bay Road/Mill Street connector. These measures recommended for implementation by 2010 are spread over several portions of the SR20 Corridor.

The capital costs for long term measures for 2010 are estimated to cost about $200,000. These measures include widening to create a four-lane section (with two westbound lanes) between Sheridan and Hancock Streets and a variable message sign system for ferry queues. This is a conservative estimate as it is based on a 2% per annum peak hour growth rate. Should peak hour traffic grow at a higher rate than assumed for this analysis, a 4- or 5-lane section would be required for all of Sims Way west of Sheridan plus sections east of Sheridan. This could easily add over a million dollars to the cost of roadway improvements. The cost of a possible rotary or other major realignment at the Mill Road intersection where SR20 almost meets Discovery Bay Road is not included as it is not recommended at this time.

Additional study will be necessary in the future to check the growth assumptions used in this report and to get more specific about improvements required after the year 2000. The major topics for such future study may well include:

1) Traffic growth along SR20 necessitating further widening to four or five lanes.
2) Traffic improvement measures for Discovery Bay Road and north/south connecting roads.
3) Traffic improvement measures for the SR20 connections to Discovery Bay and Jacob Miller Roads.
4) Improvements to the ferry system.
5) Parking requirements along the corridor.

MILL ROAD INTERSECTION

Signalization is recommended on a semi-actuated basis within the next few years. This will prevent conflicts between side street movements and through traffic, most of it traveling at 50 mph. This would be especially beneficial as there are intermittent tractor trailer left turns out of Mill Road, blocking all through lanes when they occur. Additionally, signalization would divert similar truck left turns from Thomas Street to Mill Road. This would reduce congestion on a long stretch of Sims Way, improve safety, and encourage trucks to use the shorter route away from the Port Townsend Paper mill favored by the City and County. Such signalization would also help break the flow of traffic, enabling side street vehicular and pedestrian movement across Sims Way at unsignalized intersections downstream from Mill Road. Signalization would ensure a "C" level of service at this intersection in summer peak hours under the assumed 2010 forecast. Without signalization, the level of service would be "E". Signalization will also be necessary in the future to allow turning movements in and out of Discovery Bay Road and Mill Road without excessive summer delays.

Left turns within 300 feet of this intersection should be banned when signalized. Sight distance can be improved from the west by clearing trees and brush and restitting the "40 MPH" sign at the southwest corner.

The short link with Discovery Bay Road should be widened to four lanes to accommodate more vehicles waiting there in the future. A flasher may be required there in the future, emphasizing the need for motorists to stop when approaching.

It is further recommended that the eastbound signage be modified to deliver a consistent message on the speed limit. The "40 MPH" sign approaching the intersection from the west should be changed to "30 MPH". The "ENTERING PORT TOWNSEND" sign just east of the intersection should have deleted from it "SPEED LIMIT 25 MPH UNLESS OTHERWISE POSTED" (it is followed soon after by an existing "30 MPH" sign). The net effect of these changes is to deliver one message ("30 MPH") not three different ones, to motorists. Another sign recommended on the eastbound approach prior to the intersection would indicate in large letters: "DISCOVERY ROAD" and "MILL ROAD" with appropriate arrows.

UPPER COMMERCIAL DISTRICT WEST OF MCPHERSON

This section of Sims Way requires curbing and clearly defined, limited access with the construction of a median lane for left turns. Properties and curbs should be held back from the road to permit construction of the median lane. The recommended cross section for this section is shown on Figure 13. Signage would be required to inform motorists of the following: "BEGIN TWO-WAY LEFT TURN LANE" (just west of LaSalle) and "END TWO-WAY LEFT TURN LANE" (just west of McPherson). Recommendations for the consolidation of driveways and related measures in this roadway section are specified in the Access Management Plan.

This roadway section would also benefit were existing parallel routes extended to siphon off some of the local traffic now on SR20. It would be useful if 4th Street were extended in both directions, linking to 3rd Street and to sites to the west A parallel route on the north side of Sims Way would have to be developed to serve the proposed industrial park. This could be accomplished by extending 9th Street. That street could eventually be extended to Discovery Bay Road when improvements there are made to form a continuous local route. This would provide access to the industrial park for locals without having to use SR20.

MC PHERSON AND THOMAS STREETS INTERSECTIONS

Signalization is recommended on a semi-actuated basis for 1995-2000 at a realigned McPherson Street intersection. Signalization would permit protected side street vehicular and pedestrian movement across Sims Way and help break the flow of traffic to enable similar side street vehicular and pedestrian movement across Sims Way at nearby unsignalized intersections. Signalization would ensure a "C" level of service at this realigned intersection in summer peak hours under the assumed 2010 forecast. Without Signalization, the level of service would be "E".

The realigned intersection would connect McPherson Street to Thomas Street, forming a continuous connector between Discovery Road and the Port Townsend Paper mill. It would foster "back door" access to properties along 4th Avenue (the restaurant, car wash, laundromat, antique shop, veterinary center), allowing easier access to that avenue, and enhancing its possible future role as a expanded parallel route. It would help consolidate
The recommended realignment would require both the construction of a median left-turn lane on Sims Way and a linkage south of Sims Way between McPherson and Thomas Streets. This could follow an “S” curve alignment. The link would first cross Sims Way at McPherson, continuing along the gravel continuum of McPherson by the car wash, then curve east to head up 4th Avenue. It would then curve east to Thomas Street past the Calvary Church.

The recommended intersection would have superior sight distance and geometrics than the existing Thomas Street intersection. It also could largely be constructed on existing public right-of-way, much of it already paved. No demolition of any structure is required for this linkage. The acquisition of some unpaved parking space from both the Silver Palace Restaurant and the Calvary Church would be required. Compensating space for both could be created nearby.

Short term measures at these two intersections would include clearing trees and brush to the north of McPherson Street, relocating parking on the south of McPherson Street at the Dis n’Dat store, and relocating the flower stand in front of the Port Townsend Car Wash (now obscuring the eastbound view to Thomas Street). All these measures would improve sight distance. The recommended signalization at Mill Road, combined with new signage at the Port Townsend Paper mill, should eliminate the disruptive turning movements by tractor trailers at Thomas Street. Sidewalks are recommended for the south side of Sims Way between McPherson and Hancock Streets. A pedestrian crosswalk already exists on the west side of the McPherson Street intersection.

UPPER COMMERCIAL DISTRICT, THOMAS TO HENDRICKS STREETS

This section of Sims Way, like that west of McPherson Street, requires curbing and clearly defined, limited access with the construction of a median lane for left turns. Properties and curbs should be held back from the road to permit construction of the median lane. The recommended cross section for this section is shown on Figure 13. For future conditions, a second westbound lane may be needed between Sheridan and Hancock Streets.

Signage would be required to inform motorists of the following: "BEGIN TWO-WAY LEFT TURN LANE" and "END TWO-WAY LEFT TURN LANE" just west of Hancock Street and just east of Hendricks Street. The existing "BEGIN TWO-WAY LEFT TURN LANE" and "END TWO-WAY LEFT TURN LANE" signs should be removed. The existing "BLIND PERSON CROSSING" signs should also be removed upon installation of either a flashing signal beacon or traffic signal at Sheridan Street; this would be a much safer crossing. "NO LEFT TURN" signs would be required westbound at the eastbound left-turn approach and at the Sheridan/Grant approach if westbound left turns are banned there. A pedestrian crosswalk is recommended for the west side of the Hancock Street intersection. Sidewalks are recommended for the south side of Sims Way between McPherson and Hancock Streets and the north side of Sims Way between Hancock and Cleveland Streets.

The median lane for left turns that presently terminates at Sherman Street should be continued to Hancock Street. Until a median lane is constructed on this section of Sims Way, right turn only access to and from Sims Way is recommended with a low, mountable concrete divider.
Improvements will be needed at the Hancock Street intersection. The recommended cross section for this intersection is shown on 13. It is recommended to extend the left-turn lane on this section of Sims Way from Sherman Street and install a signal beacon and a pedestrian crosswalk now, with a semi-actuated traffic signal in the future. The beacon would flash yellow to Sims Way traffic and red to Hancock traffic. Both would aid safe pedestrian crossing and the movement of Jefferson Transit buses in and out of their base. Signalization would ensure a "C" level of service at this intersection in summer peak hours under the assumed 2010 forecast. Without signalization, the level of service would be "E". Also recommended is the excavation of the northwest corner of this intersection to provide better sight distance. If these measures are implemented, the pedestrian crosswalk by the Texaco station should be relocated to the east side of this intersection.

CASTLE HILL CENTER/SHERIDAN STREET

Signalization is absolutely necessary at this intersection to ensure safe and efficient traffic operations in the near future. It will be untenable to operate as an intersection without a traffic signal. Eastbound access to the Castle Hill Shopping Center requires a left turn and would be also untenable without signalization. This would have economic consequences for this shopping center. Signalization is already warranted for summer peak conditions. Signalization would ensure a "B" or "C" level of service at this intersection in summer peak hours under the assumed 2010 forecast depending on which of two alignments is used. Without signalization, the level of service would be "F".

Short term measures can be taken to improve both existing intersections. For Sheridan Street, sight distance could be improved by excavating the embankment and clearing brush on both corners and by installing convex mirrors to reflect oncoming Sims Way traffic to Sheridan motorists. For the Castle Hill Center access, sight distance could be improved by relocating the Century 21 sign.

However, these short term measures would not solve all of this intersection's existing problems and would certainly be inadequate in solving future problems. For instance, signalization at this intersection as it is now constituted would impose some delay to the westbound flow; that flow would have to begin moving on an uphill slope. It is also likely that right-turning traffic from Sheridan Street (80% of the peak hour southbound flow) would avoid this signal by moving through the Castle Hill Center parking lot.

What is recommended instead is a major realignment of this intersection, shifting Sheridan Street's intersection with Sims Way west to Grant Street. This would require realigning the Sheridan Street roadway south of 7th Street to curve slightly southwest, along the line of the existing Photo Hut booth toward First Federal Savings and Grant Street. This realignment would permit closure of both the existing Sheridan Street intersection (as was done with Cleveland Street) and the Castle Hill Center access on Sims Way. Access to both Sheridan Street and Castle Hill would be combined at one well-designed, signalized intersection.

No buildings would need to be taken to create this new intersection. Some parking space would be lost to the Castle Hill Shopping Center and the Century 21 building would be isolated from the Castle Hill. Both impacts, could be mitigated. Replacement parking for the Castle Hill Center is available on the eastern strip of grass land 80' wide between the existing paved parking lot and Sheridan Street east of the building occupied by the State Social and Health Services. It is also available on the northwest corner of the property and on the block north along 7th Street (between Grant and Sheridan Streets). Parking space for the Century 21 building could also be provided in the eastern strip or on the vacated portion of the old Sheridan Street near the present intersection. A detailed engineering plan for the proposed realignment and a revised parking lot would be necessary to determine the exact impact on parking. However, the total number of parking spaces available at Castle Hill under this plan is likely to be about the same as it is presently.

There would be many advantages to relocating this intersection to the site recommended. It would consolidate two access points into one. It would be on more level ground, making future signalization less onerous to the uphill,

westbound flow. It would have considerably better sight distance than the existing Sheridan intersection so it would be safer. It would allow motorists seeking a left mm to Manresa Castle to actually see this building before turning, which they cannot do at Sheridan presently.

The new intersection would be better aligned for the turning movements that are actually made in the peak hour. Summer 1990 traffic counts found that 80% of the exiting Sheridan flow (and 65% of the combined Sheridan/Castle Hill egress flow) consisted of right-turns on a southwesterly axis. Also, 85% of the Sims Way turns into Sheridan (and 62% of the turns into Sheridan and Castle Hill combined) are left-turns along this same axis. This high left-turn percentage is significant given how difficult left turns are presently. Were a realigned Sheridan/Grant Street intersection signalized, the left-turn movement would certainly increase, as it will when the Castle Hill Center becomes fully leased.

The new intersection would have high capacity left-turn lanes over 300 feet long both eastbound and westbound. For future conditions, it may be necessary to ban westbound left turns (a small volume) here and to extend the recommended westbound climbing lane on the "S" curve section into a second westbound lane through this intersection to Hancock Street.

Signage can also be improved approaching this intersection. At present, eastbound motorists on Sims Way see a left-turn sign for "FAIRGROUNDS" as they approach the Castle Hill Center, causing some to enter that parking lot instead of Sheridan Street. As they approach Sheridan Street, there are no signs except directly at Sheridan, where there is an "H" (for "HOSPITAL") sign. As eastbound motorists enter the upper commercial strip of Sims Way, they are confronted with a huge billboard (the largest road sign on Sims Way) announcing "MANRESA CASTLE LEFT 1/2 MILE". Yet as they approach the turn for the castle at Sheridan, there are no Manres Castle signs.

Westbound motorists on Sims Way see a large "MANRESA CASTLE" sign with a right-turn arrow at the northwest corner of Sheridan Street. If the existing Sheridan Street alignment is retained, it would be better to have signage before Sheridan stating: "SHERIDAN STREET/COUNTY FAIRGROUNDS" and "COUNTY HOSPITAL" with another private sign for "MANRESA CASTLE", all with turn arrows and appropriate symbols. With the realigned Sheridan/Grant Street intersection, the new intersection will have large signs before the intersection stating: "SHERIDAN STREET/COUNTY FAIRGROUNDS/GRAFTON STREET" and "CASTLE HELL SHOPPING CENTER/HOSPITAL" with turn arrows and appropriate symbols.

Other signage changes should also be made concurrent with the recommended widening and realignment. A "30 MPH" sign is recommended between Sheridan and Cleveland Streets as well as a "BEGIN TWO-WAY LEFT TURN LANE" at Sherman Street The existing "BLIND PERSON CROSSING", "BEGIN TWO-WAY LEFT TURN LANE" and "END TWO-WAY LEFT TURN LANE" signs should be removed. A pedestrian crosswalk is recommended for the east side of the realigned Sheridan/Grant Street intersection. Sidewalks are recommended for the north side of Sims Way between Hancock and Cleveland Streets.

THE 'S' CURVE SECTION

Recommended for this section is widening to allow a second westbound lane to act as a climbing lane for heavier vehicles. Further widening is recommended to allow full shoulders for bicycle and pedestrian movement, separated from the traffic lanes. The recommended cross section for this section is shown on 13. A grass median might be constructed in the "S" curve section to prevent any left turn or through movements across Sims Way. The westbound right-turn curvature should be improved at the turn into 10th Street. Recommendations for access consolidation are specified in the
THE FLATLANDS SECTION

The major recommendation for this section of Sims Way is the signalization of the Safeway/Haines Street intersection. The traffic volumes recorded at this intersection show it will be warranted within the next few years. It is clearly the major point for turning movements between Sheridan and Kearney Streets. Signalization would ensure a "C" level of service at this intersection in summer peak hours under the assumed 2010 forecast. Without signalization, the level of service would be "F".

A needed concurrent improvement would be the creation of a defined public street (Haines Street) through the Safeway parking lot. Presently the northern leg of this intersection is this parking lot. Some vehicles cut through the parking lot between 12th Street and Sims Way to use this intersection. This is potentially unsafe. The creation of a public road through the parking lot would involve the loss of 36 parking spaces to Safeway, perhaps less if the road went along the Safeway/McDonald's property line. It would be a curbed, two-lane street with openings for parking lot access and would preferably be aligned with Haines Street south of Sims Way.

Consideration was also given to having San Juan (12th Street's entrance to Sims Way) as the major signalized intersection on this section of Sims Way. This was rejected for the following reasons:

1) Turning movements recorded at this intersection were only a fraction of those recorded as Haines,
2) Creation of a southern leg to this intersection would require construction of a new street and displacement of much of the Port of Port Townsend's Boat Repair Yard,
3) This intersection has no left-turn bays,
4) Paved street approaches and left-turn bays already exist at the Haines intersection, and
5) It would leave unprotected turns in and out of the major Safeway and Port of Port Townsend entrances.

It is further recommended that any future development in this section be limited to right turns only access on Sims Way, as has been done with the recent approval of the Coast-to-Coast site at 12th Street east of McDonald's. Pedestrian crosswalk should be created on the east side of the Haines and Benedict Street intersection! The left-turn median lane approaching Kearney Street should be extended west to Benedict Street for westbound left turns from Decatur to Benedict Streets. The recommended cross section for this section is shown on 13. This would foster access to properties on the south side of Sims Way in that section, including the Visitor Information Center. Large signs indicating "VISITOR INFORMATION and "BOAT HAVEN/COAST GUARD" are recommended here.

Another major recommendation for this section is the construction of a paved bicycle and pedestrian trail to bypass most of SR20 but link the proposed waterfront path to the old railway right-of-way and the Kah Tai Lagoon park. This trail would leave the railway right-of-way at Haines Street, extend north on Haines to Sims Way, run on the southern shoulder of Sims Way to Decatur Street, then run south on Decatur to Washington Street, then along Washington until it curved off to become the waterfront path. This trail would tend to divert bicycle traffic off of the upper commercial portion of Sims Way while fostering bicycle and pedestrian access to the lagoon and marina. The proposed traffic signal at Haines Street ties into this plan by establishing a safe crossing of Sims Way to the Kah Tai Lagoon park.

KEARNEY AND WASHINGTON STREET INTERSECTIONS

No changes are recommended to the geometries of either intersection so no widening on this section is required. The intersection level of service analysis for future conditions suggests that no more lanes are needed. However, what is needed are the following measures to increase capacity and improve access:

1) Extend the eastbound left-turn lane approaching Kearney Street to Decatur Street, banning westbound left turns to Decatur Street.
2) Extend the eastbound left-turn lane approaching Washington Street to Kearney Street, banning westbound left turns to Kearney Street.
3) Extend the westbound left-turn lane approaching Washington Street by making the entire left-turn lane east of Washington Street one-way.
4) Make right turn only access/egress for the Port Townsend Motel.
5) Construct sidewalks along the south side of Sims Way between Water and Decatur Streets and along the north side between Washington Street and Kearney Streets with sidewalks on the east side of Kearney Street between Washington and Jefferson Streets.
6) Make Gaines Street one-way southbound to Water Street to prevent any traffic entering Sims Way from this minor street.
7) Construct a low, mountable pedestrian median island in the wedge-shaped tail of the westbound left-turn lane approaching Washington Street to allow a safe pedestrian crossing point here.
8) For future conditions, signalize the Washington Street intersection, with left turns from Washington Street banned. Signalization would ensure a "C" level of service at this intersection in summer peak hours under the assumed 2010 forecast. Without signalization, the level of service would be "F". Vehicles seeking to turn left off Sims Way would be delayed and queue up, blocking the through lane, while vehicles seeking to turn into Sims Way would also be delayed.

A number of signs are recommended to be added to this section concurrent with implementing the above recommendations. These include "LEFT TURN FOR WASHINGTON STREET" signs approaching the eastbound left-turn bay (Kearney Street) and westbound bay (100 feet west of Water Street) and "NO LEFT TURN" signs approaching Kearney and Decatur Streets westbound and at the Port Townsend Motel exit. In addition, large eastbound signs near Decatur Street are recommended, stating: "FAIRGROUNDS/FORT WORDON STATE PARK/GOLF COURSE" and "HISTORIC DISTRICT/FERRY" with appropriate arrows and symbols. When Washington Street is signalized, remove the existing
WATER STREET SECTION

The intersection level of service analysis for future conditions suggests that no more lanes are needed to add capacity. Extensive widening should be avoided as it would encroach on either the bluffs or the properties east of the roadway. However, some widening is needed to provide adequate shoulders for bicycles and pedestrians and to extend the queuing lane for ferry traffic. This would require moving the telephone poles on the east side. Figure 13 shows the recommended new cross section.

Widening for bicycle and pedestrian access can be limited by constructing a waterfront bicycle and pedestrian path between the existing sidewalk by the Ferry Terminal and Washington Street east of Sims Way. There would still have to be some shoulder for bicycle and pedestrian access on Water Street, however. The City's recommendations to Washington State Ferries to speed the ticket selling process at the Ferry Terminal are the first measures that should be undertaken to solve the ferry queuing problem here. These measures include having a second (or third) ticket seller, selling out of a second booth, and a faster ticket selling process. These require no capital construction or enforcement problems. The Ferry Terminal already has the capacity to store about 130 autos (or equivalent mix of vehicles) on the dock itself. This is equivalent to two full boatloads.

Increasing the size of either the Ferry Terminal or the vessels serving it may be out of the question for at least a decade. This is because of the large capital costs involved in doing either. Washington State Ferries uses Steel Electric Class vessels on this route. These boats can accommodate a maximum of only 75 autos (or equivalent mix of vehicles) per trip. Most larger vessels would not fit into the existing docks and have a higher draft, rendering them unable to navigate the shallow waters approaching the Keystone terminal. Washington State Ferries has only three vessels in its entire fleet with a shallower draft than the Steel Electric boats (12-foot draft); all three have less vehicular carrying capacity. While it would be operationally feasible for Washington State Ferries to operate a third vessel on this route (it operates two during peak demand periods and one most of the time), that would be economically prohibitive. A third vessel and crew would be idle the vast majority of the time. Indeed, other than during summer peaks, one vessel is sufficient to handle the demand on this route which, in winter, is about one sixth the demand experienced in summer.

Given the limit to the ferry system's capacity, plus the substantial growth in ferry traffic, it is recommended that more vehicle queuing space be created along Water Street. Widening of Water Street to create a ferry queuing lane is recommended for future conditions as the most cost-efficient solution for this. Extending the queuing lane for ferry traffic would add about thirteen spaces to a right hand lane that already holds about six (assuming 30 feet per vehicle in queue). Signage indicating "RIGHT LANE FOR KEYSTONE FERRY" and "KEYSTONE FERRY/RIGHT LANE AHEAD" (prior to Water Street) should be incorporated concurrently with the ferry lane.

There has been concern that vehicle use of such a ferry queuing lane would effectively cut off access during peak ferry periods to the properties along Water Street. Recommendations for the handling access to these driveways are specified in the Access Management Plan.

Another measure is recommended to be considered to aid in this problem. That is to have an electronic signage system for ferry users along SR20. This system would indicate how long the expected wait for the ferry would be. This system would involve electronic signs on Sims Way at Kearney Street, along Water Street and at Ferry Terminal itself.

ACCESS MANAGEMENT PLAN ELEMENT

GENERAL ACCESS RECOMMENDATIONS

For all of SR20 east of LaSalle street, curbing is recommended to limit access to specific, well delineated entries and exits to properties. These should preferably spaced well apart, for existing properties by consolidating access points. Coincident with curbing and access consolidation, signage to these properties should be combined to reduce confusion and clarify entrance locations. Building setbacks and transit easements (to allow common driveways) should be mandated by City code.

In addition to the possibilities for existing properties, plans should be developed to limit access for future properties. This can be accomplished by easement agreements, a municipal ordinance on access that specifies minimum spacing requirements and curbing, and by extending 3rd, 4th, 9th, or other parallel streets to create indirect access to Sims Way. A sample municipal ordinance on minimum spacing requirements for access is shown as Appendix C.

The following are suggestions to consolidate some existing access points that are in close proximity and could operate with shared driveways.

Hilltop Tavern - Consolidate access at one marked driveway; if feasible, combine with access to the proposed Industrial Park, with Industrial Park access at one point on Sims Way and on McPherson Street.

Port Townsend Honda & Marine and Jackpot - Consolidate access at the existing Jackpot driveway; the Honda access is right next to it.

Napa Auto Parts - Consolidate access with that of the commercial building directly south of it (containing Angeles Medical Supply, Peninsula Floor Covering, Bergstrom Sewing Center).

Veterinary Center and Olympic Real Estate- Consolidate access on Sims Way through Olympic Real Estate and on 4th Street through the Veterinary Center.

Port Townsend Cafe and State Farm Insurance - Consolidate access at one point on Sims Way, granting an easement to the vacant property to the south. Relocate parking for the Cafe to the south side and rear.

Port Townsend Car Wash, Port Townsend Laundromat, and White Rose Antiques - Consolidate access of all three at one point on Sims Way and one on McPherson.

Dis n’ dat Store, John’s Auto Supply, and Bluebird Antiques - Relocate the existing parking (too close to Sims Way) to the rear and west side of these buildings via a single driveway off Sims Way and “back door” access from McPherson Street.

Maestro Burger/10th Street - Consolidate access at 10th Street, with right turn only egress at Hill Street.

MILL ROAD AREA AND FOREST CORRIDOR

This area is now largely undeveloped and has few access points. The general measures already recommended - access spacing controls and the extension of parallel local streets to provide access off of SR20 - would effectively limit access in this section. City review of site plans should also be used to influence future access. At the Mill Road intersection, left turns within 300 feet of it should be banned when it is signalized. Westbound left
UPPER COMMERCIAL DISTRICT WEST OF THOMAS STREET

Existing access and egress points to several properties on this section of road could be consolidated to reduce the number of driveway locations. It is suggested to consolidate the access to the Port Townsend Car Wash, the Port Townsend Laundromat, and White Rose Antiques with one access point on Sims Way and one on McPherson. It is similarly suggested to consolidate access to the Veterinary Center and Olympic Real Estate with access to the Veterinary Center through Olympic Real Estate or 4th Street only. The Napa Auto Parts access could be combined with that of the commercial building directly south of it (presently containing Angeles Medical Supply, Peninsula Floor Covering, and the Bergstrom Sewing Center). This should done at a point slightly west of the Jackpot Food Mart access to avoid opposing left-turn conflicts.

Measures should be taken to prevent any more access points on this section of Sims Way. These measures include transit easements for undeveloped properties enforcement of a proposed municipal access ordinance, site plan review powers and the increased use of the parallel local route, 4th Street. The realigned McPherson/Thomas intersection would provide "back door" access to the existing properties along 4th Street (the Port Townsend Car Wash, Port Townsend Laundromat, and White Rose Antiques, and the Veterinary Center, as well as to Olympic Real Estate if linked, as recommended, to 4th Street. It would help consolidate access points, replacing two intersections with one while improving access to both the paper mill and the proposed industrial park. Future properties could gain access to 4th Street or an extension of 4th, obviating direct access onto Sims Way.

Access limits could also be imposed on the west side of Sims Way in this section. Immediately north of McPherson is a low commercial building close to the Sims Way roadway that houses three properties: the Dis n’ dat Grocery Store, John’s Auto Supply, and Bluebird Antiques. These stores depend on diagonal parking close to Sims Way for customer access though a few unmarked spaces are also available next to Dis n’ dat on McPherson. This diagonal parking is too close to Sims Way to allow roadway widening here or to allow a consolidation of these properties’ access with curbing. It is also a poor situation to have parkers backing up next to, and potentially into, a major roadway. These parking and backing maneuvers also block visibility to and from McPherson Street. The recommended solution here is to either relocate parking to the north and west of this building or to physically move this building westward to allow curbed, off-street parking with access points off of McPherson and at one point on Sims Way.

A single access point with curbing to section off-street parking off of Sims Way is recommended for the Port Townsend Cafe and State Farm Insurance buildings with an easements granted for the vacant property to the south. Parking for the Port Townsend Cafe could be reoriented to the south side and rear of the building, where there is ample space while parallel parking only would be permitted in front. A single access point is also recommended for the Port Townsend Honda & Marine and the Jackpot Food Mart. The access and parking system for the Jackpot is good; as the Honda access is virtually next to it might well be made off of the Jackpot parking lot, with the Honda frontage all curbed.

Access to the Hilltop Tavern should be at one clear driveway with curbing on remainder of frontage and possibly combined with that of the proposed Industrial Park.

UPPER COMMERCIAL DISTRICT, THOMAS STREET TO SHERIDAN STREETS

This section of Sims Way, like that west of McPherson Street, requires curbing and clearly defined, limited access with the construction of a median lane for left turns. Properties and curbs should be held back from the road to permit construction of the median lane.

Curb the Sea Breeze Center properties, combining access for the Sea Breeze grocery, service station, and mobile home park on Sims Way at Sherman Street, with a secondary access on Hendricks Street if feasible, limit the mobile home park to an access on Hendricks Street only. There is a median lane in both directions approaching Hendricks Street while there is only the taper of one approaching Sherman northbound.

The two remaining properties on the west side of Sims Way between Hendricks and Hancock (Ruddell Auto lot and Port Townsend Realty) also should have curbing and a single access, preferably off of Hancock Street only. Similar curbing and access limitation access should be applied to the Texaco service station, with access points at northern and southern ends on Sims Way plus one on Hancock. The General Insurance Service and Community Thrift Store properties could share common access and egress points.

Operation of the realigned Sheridan/Grant Street intersection would further be enhanced by closing the direct access into Sims Way from the Family Dental Center, the Port Townsend Vision Clinic, and First Federal Savings. All three should have their access redirected into Grant Street. Also, the pedestrian crosswalk on Sims Way now west of Hendricks should be relocated to the east side of the new intersection when signalized.

THE 'S' CURVE SECTION

This section presently has few cross street or turning movements on it due to a lack of commercial development. One effective measure to ensure these do not occur in the future is to construct a raised median strip on this section, concurrent with the other recommended widening. This would prevent left rums and cross movement by vehicles yet would make any pedestrian crossing easier. Curbing an access control is recommended at the Maestro Burger property, with access limited to 10th Street and a right turn only exit at the present Hill Street access. Hill Street should be vacated to reduce future access while a grass median might be constructed in the “S” curve section to prevent any left turn or through movement across Sims Way. The westbound right-turn curvature should be improved at the turn into 10th Street.

THE FLATLANDS SECTION

The access spacing controls and effective City review of site plans should also be used to influence future access in this section. The recent right-turn only access granted to Coast-to-Coast is a good example of what can be achieved. The recommended signalization and roadway widening will improve left-turn access in the Flatlands to Safeway, the Visitor Center, McDonalds, the Port property, and the commercial area just east of the marina. The other effect of the recommended traffic improvements would be to foster "backdoor" use of 12th and Washington Streets to reach properties along SR20.

KEARNEY AND WASHINGTON STREET INTERSECTIONS

The access controls recommended for this section include establishing right turn only access for the Port Townsend Motel and making Gaines Street one-way eastbound to Water Street. The latter measure would prevent any traffic Sims Way from this minor street and would effect the commercial building bounded by Gaines, Water, and Sims Way as well as the Interwest Savings Bank and the Edgewater Condominiums. The traffic recommendations include banning westbound left turns to Kearney Street in order to extend the eastbound left-turn lane approaching Washington Street. The loss of this left turn would be more than made up for by the provision of a signalized left turn at Washington Street at a better angle so no
properties would be negatively impacted by that measure.

WATER STREET

The access spacing controls and effective City review of site plans should be applied here to limit access. The major traffic recommendation in this section is to create a continuous ferry queue lane by slightly widening this section of Water Street. There has been concern that vehicle use of such a ferry queuing lane would effectively cut off access during peak ferry periods to the properties along Water Street. These include the Bayview Restaurant, Bill's (Les Schwab) Tire, Signs By Seaman, the new condominium complex, and the Tides Inn. While delineated gaps in this lane could be maintained to allow such access, manual enforcement of these may be necessary. Even so, this may prove easy to enforce, would be required only on an occasional basis, and would only be needed in summer. It could be performed by persons other than the City Police such as summer youth guides hired by the City who could perform a host of other functions as well. Faster ticket processing at the Ferry Terminal itself, another traffic-related recommendation, may also alleviate any potential problem.

REFERENCES

1) The Transpo Group, Glen Cove Transportation Study, for Jefferson County Department of Public Works, January 1990.
3) Federal Highway Administration, Manual on Uniform Traffic Control Devices, 1978 (plus revisions 1-4, 1986), Section 4-C.
5) Washington Department of Transportation, Non-User Economic Considerations, Port Towns end Ferry Terminal, October 1976.
6) Washington Department of Transportation, Port Townsend Ferry Terminal, Design Report and Project Background, April 1981.
8) Transportation Solutions, Inc., Port Townsend McDonald's Restaurant Traffic Analysis, for McDonald's Corporation, September 1987.

APPENDIX A

PORT TOWNSEND GATEWAY PARKING INVENTORY

NOTE: Given from East to West along Sims Way Corridor, identifying off-street parking spaces on properties adjacent to Sims Way and on Washington Street south of Sims Way. There are no on-street parking spaces on Sims Way. Conservative estimates are given, most properties having unlined, unorganized parking lots, many with marginal cleared ground occasionally used for parking.

Ferry Terminal -- about 10, plus queue space (112 beyond Toll Booth on 10 lanes and 20 before, all paved)
Bayview Restaurant -- about 20, paved
Bill's (Les Schwab) Tire -- about 30, paved
Condominiums (under construction) -- unknown (15+ ?)
Tides Inn -- 28, paved
Signs By Seaman -- 15+, gravel
Commercial Building (Gaines-Water-Sims Way) -- 35, paved off-street plus diagonal on-street on Gaines Street - 10, and Water Street - 16, plus Water Street head-on-street - 10, plus large gravel lot and second eastbound lane for ferry queues
Interwest Savings Bank (south side, Gaines-Washington) -- 32, paved
Edgewater Condominiums (south side of Washington Street, Sims Way-Kearney) -- 10, paved
Port Townsend Motel, north side, north of Washington -- 34, paved
Pennysaver (General Store) NE comer, Sims & Kearney -- 58, paved
Kearney Street south of Sims Way -- 9 head-on-street, paved
Commercial Building (SW comer, Kearney & Sims Way) -- 4, paved
Great Northwest Federal Savings Bank (west of Jefferson Street, Kearney to Sims Way) -- about 30, paved
Lumber Yard south of Sims Way, west of Kearney -- 20+, unpaved
Caldwell Banker south of Sims Way, west of Kearney -- 13, paved
Visitor Center south side, west of Decatur -- about 15, unpaved
Jefferson Street commercial properties south of Sims Way, west of Decatur Street -- 20+, unpaved plus on-street
Garden Center, south of Sims Way at Benedict -- 8 unpaved
Texaco service station, south of Sims Way at Benedict -- 5+ Pacific Oil Products, south side, west of Texaco -- 30+, gravel
Port of Port Townsend -- undefined, largely gravel or dirt. Port Plan calls for 40 off-street by marina, 21 in fish processing area, 117 diagonal directly on Washington Street, 46 head-on on Washington Street, 96 in Public Administration area, 23 in Boat Repair/Building Yard, 34 in Manufacturing/Warehouse area, 80 in Long Term Storage area, and 17 by Boat Trailer parking for 474 TOTAL.

McDonalds north of Sims Way, east of Haines -- 53, paved
Safeway supermarket, north of Sims Way, west of McDonalds -- 301, paved (36 in ROW of potential 30’ Haines Street extension)

Maestro Burger north of Sims Way and Hill Street, north of 10th -- 25+, unpaved

Family Dental Center, west of Sheridan, south of Sims Way -- .8 paved

Port Townsend Vision Clinic south of Sims Way, west of Family Dental Center --7 paved

Castle Hill Shopping Center, between Hendricks and Sheridan Streets, north side of Sims Way -- 360, paved (including 18 at NE corner Law office/State building

First Federal Savings, south of Sims Way, opposite Castle Hill Center -- 8 in front, 7 in back, paved

Community Thrift Store, south of Sims Way, near Hendricks -- 8 unpaved

General Insurance Service, west of Community Thrift Store, south of Sims Way -- 10 unpaved

Sea Breeze Grocery, north of Sims Way, west of Hendricks -- about 10 unpaved

Sea Breeze service station west of Grocery -- about 10 unpaved

Texaco service station, south of Sims Way north of Hancock -- 10+

Ruddell Auto lot, north of Sims Way, west of Sea Breeze -- NA

Port Townsend Realty north of Sims Way north of Hancock -- 23, paved

Kosec Funeral Home north of Sims Way west of Hancock -- 30+, paved

Jefferson Transit, south of Sims Way west of Hancock -- 30+, paved/unpaved (exclusive of bus parking)

Port Townsend Appliances south of Sims Way north of Thomas -- about 10, paved (front) and 10, unpaved (back)

Village Mechanic south of Sims Way north of Thomas -- 10+ unpaved

Silver Palace (Chinese Restaurant) south of Sims Way west of Thomas -- about 20, paved (front) and 15, gravel (back)

S & E Auto & Yacht Brokers north of Sims Way north of Thomas -- 40+, gravel

Port Townsend Car Wash, SW of Sims/McPherson --10+, unpaved

Port Townsend Laundromat west of Car Wash -- 6, paved

Dis n’ dat (Grocery Store) north of Sims Way and west of McPherson -- 4, diagonal to Sims Way, paved

John’s Auto Supply north of Sims Way west of McPherson -- 7, diagonal to Sims Way, paved (south of Dis n’dat)

White Rose Antiques south of Sims Way west of McPherson -- 15+ gravel (south of Port Townsend Laundromat)

Bluebird Antiques north of Sims Way west of McPherson -- 3, diagonal to Sims Way, paved (south of Johns)

Port Townsend Cafe north of Sims Way west of Bluebird Antiques -- about 40, unpaved

State Farm Insurance, north of Sims Way, west of Port Townsend Cafe -- about 10, unpaved

Veterinary Center, south side opposite State Farm Insurance -- 7, paved

Olympic Real Estate south of Sims Way west of Veterinary Center -- about 10, paved

Port Townsend Honda & Marine, north of Sims Way, west of State Farm Insurance -- about 10, unpaved

Jackpot (Grocery Store & service station) north of Sims Way, west of P Honda -- 20+ paved

Napa Auto Parts south of Sims Way, west of Olympic Real Estate -- 25+, paved

Commercial Building south of Sims Way west of Napa Auto Parts, opposite Jackpot -- about 40, paved

Hilltop Tavern north of Sims Way, west of Jackpot -- 15+ gravel

Piccolo Italian Restaurant north of Sims Way west of Mill Road -- about 25, paved

Peninsula Motors south of Sims Way north of Smiley’s Auto Repair -- about 20, paved

Smiley’s Auto Repair/Red Rooster Antiques south of Sims Way north of Mill Road -- about 10, unpaved

Table 1
LEVEL OF SERVICE DEFINITIONS (SIGNALIZED INTERSECTIONS)

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Traffic Row Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Very low average stopped delay, less than five seconds per vehicle. This occurs when progression is extremely favorable, and most vehicles arrive during the green phase. Most vehicles do not stop at all. Short cycle lengths may also contribute to low delay.</td>
</tr>
</tbody>
</table>
Average stop delay is in the range of 5.1 to 15.0 seconds per vehicle. This generally occurs with good progression and/or short cycle lengths. More vehicles stop than for LOS A, causing higher levels of average delay.

Average stopped delay is in the range of 15.1 to 25.0 seconds per vehicle. These higher delays may result from fair progression and/or longer cycle lengths. Individual cycle failures may begin to appear in this level. The number of vehicles stopping is significant at this level, although many still pass through the intersection without stopping.

Average stopped delays are in the range of 25.1 to 40.0 seconds per vehicle. The influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle length, or high volume/capacity ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.

Average stopped delays are in the range of 40.1 to 60.0 seconds per vehicle. This is considered to be the limit of acceptable delay. These high delay values generally indicate poor progression, long cycle lengths, and high volume/capacity ratios. Individual cycle failures are frequent occurrences.

Average stop delay is in excess of 60 seconds per vehicle. This is considered to be unacceptable to most drivers. This condition often occurs with oversaturation. It may also occur at high volume/capacity ratios below 1.00 with many individual cycle failures. Poor progression and long cycle lengths may also be major contributing causes to such high delay levels.

TABLE 2
LEVEL-OF-SERVICE CRITERIA FOR SIGNALIZED INTERSECTIONS

<table>
<thead>
<tr>
<th>Stopped Delay Per Level of Service</th>
<th>Vehicle (Sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5.0</td>
</tr>
<tr>
<td>B</td>
<td>5.1 to 15.0</td>
</tr>
<tr>
<td>C</td>
<td>15.1 to 25.0</td>
</tr>
<tr>
<td>D</td>
<td>25.1 to 40.0</td>
</tr>
<tr>
<td>E</td>
<td>40.0 to 60.0</td>
</tr>
<tr>
<td>F</td>
<td>>60.0</td>
</tr>
</tbody>
</table>

TABLE 3
GENERAL LEVEL OF SERVICE DESCRIPTIONS FOR UNSIGNALIZED INTERSECTIONS

<table>
<thead>
<tr>
<th>LOS</th>
<th>General Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Nearly all drivers find freedom of operation</td>
</tr>
<tr>
<td></td>
<td>Very seldom is there more than one vehicle in the queue</td>
</tr>
<tr>
<td>B</td>
<td>Some drivers begin to consider the delay an inconvenience</td>
</tr>
<tr>
<td></td>
<td>Some drivers begin to consider the delay an inconvenience</td>
</tr>
<tr>
<td>C</td>
<td>Some drivers begin to consider the delay an inconvenience</td>
</tr>
<tr>
<td></td>
<td>Most drivers feel restricted, but not objectionably so</td>
</tr>
<tr>
<td>D</td>
<td>Often there is more than one vehicle in the queue</td>
</tr>
<tr>
<td></td>
<td>Drivers feel quite restricted</td>
</tr>
</tbody>
</table>
| E | Represents a condition in which the demand is near or
equal to the probable maximum number of vehicles that can be accommodated by the movement
- There is almost always more than one vehicle in the queue
- Drivers find the delays to be approaching intolerable levels

F
- Forced flow
- Represents an intersection failure condition that is caused by geometric and/or operational constraints external to the intersection

TABLE 4

LEVEL OF SERVICE CRITERIA for UNSIGNALIZED INTERSECTIONS

<table>
<thead>
<tr>
<th>Reserve Capacity (pcph)</th>
<th>Level of Service</th>
<th>Expected Delay to Minor Street Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>>400</td>
<td>A</td>
<td>Little or no delay</td>
</tr>
<tr>
<td>300-399</td>
<td>B</td>
<td>Short traffic delays</td>
</tr>
<tr>
<td>200-299</td>
<td>C</td>
<td>Average traffic delays</td>
</tr>
<tr>
<td>100-199</td>
<td>D</td>
<td>Long traffic delays</td>
</tr>
<tr>
<td>0-99</td>
<td>E</td>
<td>Very long traffic delays</td>
</tr>
<tr>
<td>*</td>
<td>F</td>
<td>*</td>
</tr>
</tbody>
</table>

* When demand volume exceeds the capacity of the lane, extreme delays will be encountered with queuing which may cause severe congestion affecting other traffic movements in the intersection. This condition usually warrants improvement to the intersection.

Table 5

SIGNALIZED INTERSECTION LEVELS OF SERVICE, SUMMER 1990 TRAFFIC, STATE ROUTE 20, PORT TOWNSEND (PM PEAK HOUR)

<table>
<thead>
<tr>
<th>Intersection</th>
<th>LOS</th>
<th>Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mill Road</td>
<td>C</td>
<td>17.3</td>
</tr>
<tr>
<td>McPherson</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Thomas</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>McPherson/Thomas*</td>
<td>B</td>
<td>10.9</td>
</tr>
<tr>
<td>Hancock</td>
<td>B</td>
<td>9.1</td>
</tr>
<tr>
<td>Sheridan</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Sheridan/Castle Hill*</td>
<td>B</td>
<td>12.0</td>
</tr>
<tr>
<td>Haines</td>
<td>B</td>
<td>13.2</td>
</tr>
<tr>
<td>Kearney</td>
<td>C</td>
<td>15.1</td>
</tr>
<tr>
<td>Washington</td>
<td>C</td>
<td>15.6</td>
</tr>
<tr>
<td>Ferry Term</td>
<td>B</td>
<td>7.9</td>
</tr>
</tbody>
</table>

Delay = Average delay (seconds) for vehicles.

* Proposed Realigned Intersection

TABLE 6

SIGNALIZED INTERSECTION LEVELS OF SERVICE, SUMMER 2010 TRAFFIC, STATE ROUTE 20, PORT TOWNSEND (PM PEAK HOUR)

<table>
<thead>
<tr>
<th>Intersection</th>
<th>LOS</th>
<th>Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mill Road</td>
<td>C</td>
<td>31.0</td>
</tr>
<tr>
<td>McPherson</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Thomas</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>McPherson/Thomas*</td>
<td>C</td>
<td>24.8</td>
</tr>
<tr>
<td>Hancock</td>
<td>C</td>
<td>19.2</td>
</tr>
<tr>
<td>Sheridan</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Sheridan/Castle Hill*</td>
<td>C</td>
<td>18.8</td>
</tr>
<tr>
<td>Haines</td>
<td>C</td>
<td>19.3</td>
</tr>
<tr>
<td>Kearney</td>
<td>C</td>
<td>20.7</td>
</tr>
<tr>
<td>Washington</td>
<td>C</td>
<td>21.8</td>
</tr>
</tbody>
</table>
Delay = Average delay (seconds) for vehicles.

* Proposed Realigned Intersection

Table 7
TRAFFIC SIGNAL WARRANT ANALYSIS
SR20 CORRIDOR, PORT TOWNSEND
1990 TRAFFIC CONDITIONS

<table>
<thead>
<tr>
<th>Intersection</th>
<th>1</th>
<th>2</th>
<th>7</th>
<th>9</th>
<th>Warranted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mill Road</td>
<td>NA</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>McPherson</td>
<td>NA</td>
<td>NA</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Thomas</td>
<td>NA</td>
<td>NA</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>McPherson/ *Thomas</td>
<td>NA</td>
<td>NA</td>
<td>Yes</td>
<td>No</td>
<td>Marg</td>
</tr>
<tr>
<td>Hancock</td>
<td>NA</td>
<td>NA</td>
<td>Yes</td>
<td>No</td>
<td>Marg</td>
</tr>
<tr>
<td>Castle Hill</td>
<td>NA</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Marg</td>
</tr>
<tr>
<td>Sheridan</td>
<td>Marg</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sheridan</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Grant</td>
<td>*</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Haines</td>
<td>Marg</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Washington</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Kearney</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* Proposed Realigned Intersection

Table 8
TRAFFIC SIGNAL WARRANT ANALYSIS
SR20 CORRIDOR, PORT TOWNSEND
2010 TRAFFIC CONDITIONS

<table>
<thead>
<tr>
<th>Intersection</th>
<th>1</th>
<th>2</th>
<th>7</th>
<th>9</th>
<th>Warranted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mill Road</td>
<td>Marg</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>McPherson</td>
<td>NA</td>
<td>NA</td>
<td>Yes</td>
<td>No</td>
<td>Marg</td>
</tr>
<tr>
<td>Thomas</td>
<td>NA</td>
<td>NA</td>
<td>Yes</td>
<td>No</td>
<td>Marg</td>
</tr>
<tr>
<td>McPherson/ *Thomas</td>
<td>NA</td>
<td>NA</td>
<td>Yes</td>
<td>No</td>
<td>Marg</td>
</tr>
<tr>
<td>Hancock</td>
<td>NA</td>
<td>NA</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Castle Hill</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sheridan</td>
<td>Marg</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sheridan</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Grant</td>
<td>*</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Haines</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Washington</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Kearney</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* Proposed Realigned Intersection

APPENDIX B
CAPITAL COST ESTIMATE, PORT TOWNSEND GATEWAY
ROUTE DEVELOPMENT PLAN

add and fix tabs(COSTS shown in thousands)

SHORT TERM MEASURES

- Traffic Signal, Fully Actuated (Haines)125
- Traffic Signal, Semi-Actuated (Mill)115
- Flasher* (Sheridan)15

SUBTOTAL ...$255

INTERMEDIATE MEASURES FOR 1995

- Traffic Signal, Fully Actuated (Sheridan)125
- Traffic Signal. Semi-Actuated (Ind Park)115
Flasher* (Hancock) 2
New Roadway Construction (Sheridan) 68
270 linear feet @ $250/ft
New Roadway Acquisition (Sheridan) 41
13,800 square feet @ $3/sf
New Roadway Construction (Haines) 88
350 linear feet @ $250/ft
New Roadway Acquisition (Haines) 54
18,000 square feet @ $3/sf
Roadway Widening (Sheridan-bid Park) 330
Adding third lane (@ 32,000 sf) on 2,200 linear feet
SUBTOTAL $823

INTERMEDIATE MEASURES FOR 2000
Traffic Signal, Fully Actuated (Washington) 125
Traffic Signal, Semi-Actuated (Hancock) 115
Traffic Signal, Semi-Actuated (McPherson) 115
Flasher* (Discovery Road) 2
New Roadway Construction (McPherson-Thomas) 243
970 linear feet @ $250/ft
New Roadway Acquisition (McPherson-Thomas) 55
22,000 square feet @ $2.5/sf
Roadway Widening (Water Street) 60
Adding third lane (@ 4,400 sf) on 400 linear feet
Roadway Widening (Decatur-Benedict) 38
Adding third lane (@ 3,000 sf) on 250 linear feet
Roadway Widening ("S" Curve) 390
Adding third lane (@ 13,400 sf) on 2,600 linear feet
Roadway Widening (Discovery Road connector) 15
Adding third lane (@ 1,800 sf) on 100 linear feet
New Signage & Removal of Old Signs** 7
SUBTOTAL $1,165

LONG TERM MEASURES FOR 2010
Roadway Widening (Sheridan-Hancock) 115
Adding fourth lane (@ 13,800 sf) on 1,150 linear feet
Ferry Queue Variable Message Sign System 80
SUBTOTAL $195
TOTAL, ALL PHASES $2,438
X 1.4 Contingency, ROW, and Engineering Factor

GRAND TOTAL, CAPITAL COST $3,413***

* Purchase of Single Rasher, to be repositioned first to Hancock, then to Discovery Road with installation cost only shown for secondary and tertiary locations.
** Signage Costs For All Phases allocated here.
*** Grand Total Costs include only those for specific recommendations to SR20 and abutting properties within planning horizon given. They exclude the cost of improvements to
6.3 APPENDIX: VISUAL ANALYSIS

VISUAL ANALYSIS

This map provides a record of findings from the visual Analysis of the natural and built landscape, architectural, and Civic design features throughout the Gateway Corridor. It forms the basis for the Appendix 6.4 map which indicates Streetscape Development Recommendations.

6.4 APPENDIX: STREETSCAPE DEVELOPMENT RECOMMENDATIONS
This map provides a record of landscape and streetscape recommendations along the Gateway Corridor. The recommendations are consolidated by rooms within districts, and by Corridor segments. These recommendations are summarized in Section 3, Description of Corridors/Districts of the
6.5 APPENDIX: COST MEMORANDUM

Prepared by
STASTNY ARCHITECTS pc: Urban Design
MAYER/REED: Landscape Architecture
KITTELSON AND ASSOCIATES: Traffic & Transportation Planners
ARNOLD, ARNOLD AND ASSOCIATES: Civil Engineers

December 5, 1990
Revised December 12, 1990
Revised February 11, 1991

The following costs have been assembled to establish an order of magnitude for the improvements proposed in the Gateway Development Plan. Additionally, they are listed in an incremental basis so that pieces of the Sims Way Corridor improvements can be budgeted as implementation programs are developed. The costs are in January 1991 dollars and should be inflated in accordance with the projected Capital Improvement Program of the City of Port Townsend.

SUMMARY

TOTAL COSTS PER CORRIDOR/DISTRICT

<table>
<thead>
<tr>
<th></th>
<th>Cost</th>
<th>x 1.4 Contingency*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest Corridor</td>
<td>$592.24</td>
<td>$829.14</td>
</tr>
<tr>
<td>Upper Commercial District</td>
<td>$2,881.84</td>
<td>$4,034.58</td>
</tr>
<tr>
<td>S-Curves Corridor</td>
<td>$1,174.92</td>
<td>$1,644.88</td>
</tr>
<tr>
<td>Flats District</td>
<td>$1,618.61</td>
<td>$2,266.05</td>
</tr>
<tr>
<td>Bluffs Corridor</td>
<td>$880.57</td>
<td>$1,232.80</td>
</tr>
<tr>
<td>GRAND TOTAL - GATEWAY CORRIDOR (Costs shown in thousands)</td>
<td>$7,148.18</td>
<td>$10,007.46</td>
</tr>
</tbody>
</table>

TOTAL LINEAL FEET PER CORRIDOR/DISTRICT

<table>
<thead>
<tr>
<th></th>
<th>Lineal feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest Corridor</td>
<td>2,010 lin. feet</td>
</tr>
<tr>
<td>Upper Commercial District</td>
<td>4,430 lin. feet</td>
</tr>
<tr>
<td>S-Curves Corridor</td>
<td>2,600 lin. feet</td>
</tr>
<tr>
<td>Flats District</td>
<td>4,650 lin. feet</td>
</tr>
<tr>
<td>Bluffs Corridor</td>
<td>2,150 lin. feet</td>
</tr>
<tr>
<td>GRAND TOTAL - GATEWAY CORRIDOR</td>
<td>15,840 lin. feet</td>
</tr>
</tbody>
</table>

FOREST CORRIDOR

SPECIFICATIONS FOR IMPROVEMENTS

Improvements throughout Forest Corridor
1. Streetlights - provide at 50' o.c. at each side of Sims
2. Landscaping - infill conifers at gaps - assume conifers at 25' o.c.; in a 30' deep zone
3. Pathway - develop gravel or bark path in trees, off of Sims Way, 4' wide
4. Underground Utilities

Improvements at Specific Locations in Forest Corridor
5. Roadway Improvements - Widen Discovery Road connector adding third lane on 100 linear feet, for 2000 condition; provide continuous shoulder along Sims Way
6. Traffic Signalization
 a. Semi-actuated signal at Mill, for 1990 condition
 b. Rasher at Discovery Road, for 2000 condition
7. New signage and removal of old signs
8. Business signage consolidation

COSTS PER 100 LINEAL FEET (Costs shown in thousands)
1. Streetlights-$10
2. Landscaping - $.75
3. Pathway-$6.80
4. Underground Utilities - $11
TOTAL COST PER 100 LINEAL FEET = $22.35

SUBTOTAL COST PER CORRIDOR = $449.24

(Corridor = 2.010 lineal feet)

COSTS PER ITEM FOR FOREST CORRIDOR (Costs shown in thousands)
5. Discovery Road - widening and shoulders - $15
6. a-Signal at Mill-$115
 b - Rasher at Discovery Road - $2
7. Signage-$1
8. Signage-$10

TOTAL ITEM COSTS PER CORRIDOR = $ 143

TOTAL COST - FOREST CORRIDOR = $592.24

UPPER COMMERCIAL DISTRICT

SPECIFICATIONS FOR IMPROVEMENTS

Improvements Throughout District
1. Curbs at planter strip, both sides of Sims; including gutters
2. Landscaping
 a. Deciduous street trees on both sides of Sims at 35' o.c. b. Irrigated ground cover at trees c. Irrigated grass in planter strips
3. Sidewalks along both sides of Sims
4. Streetlights along both sides of Sims, at 50' o.c.
5. Underground utilities
6. Driveway access - one every 100', both sides of Sims
7. Drainage with catch basin on one side, inlet on the other

Improvements at Specific Locations in District
8. Contingency for curb, walk, driveway access, and drainage (20% of $6,880)
9. Roadway Improvements
 a. Widen Sims with a third lane, between the proposed Industrial Park and Sheridan Street, (total of 2,200 lineal feet), for 1995 conditions. b. Widen Sims with a fourth lane, between Sheridan and Hancock Streets, (total of 1.150 lineal feet), for 2010 conditions.
10. Traffic Signalization
 a. Flasher at Sheridan Street, for 1990 conditions
 b. Signal, fully activated, at Sheridan Street, for 1995 conditions
 c. Signal, semi-activated, at proposed Industrial Park, for 1995 conditions
 d. Flasher, at Hancock, for 1995 conditions
 e. Signal, semi-activated, at Hancock, for 2000 conditions
 f. Signal, semi-activated, at McPherson, for 2000 conditions
11. Intersection realignments
 a. Roadway acquisition at Sheridan Street, (13,800 sq ft total), for 1995 condition
 b. Roadway construction at Sheridan, (270 lineal feet total), for 1995 condition
 c. Roadway acquisition at McPherson, (22,000 sq ft total), Thomas, for 2000 condition
 d. Roadway construction at McPherson, (970 lineal feet total), Thomas, for 2000 condition
 e. Land acquisition - (property for church relocation)
 f. Move building (church)
 g. New parking lot construction and landscaping
12. Special paving at McPherson Street intersection
14. Building removal
 a. Demolition and clearing of building
 b. Land acquisition (Dis’n Dat) for parking lot
 c. New parking lot construction and landscaping
15. Business signage consolidation

COSTS PER 100 LINEAL FEET (Costs shown in thousands)
1. Curbs at Planters - $2
2. a - Street trees - $.78
 b - Irrigated ground cover - $1.50
 c - Irrigated grass - $.32
3. Sidewalks - $1.98
4. Streetlights - $10
5. Underground utilities - $11
6. Driveways - $.27
7. Drainage - $2.63

TOTAL COST PER 100 LINEAL FEET = $30.48
TOTAL COST PER DISTRICT = $1,350.26
(District = 4,430 lineal feet)

COSTS PER ITEM FOR DISTRICT (Costs shown in thousands)
8. Contingency - $1.38
9. a - Roadway widen - $330
 b - Roadway widen - $115
10. a - Flasher at Sheridan - $15
 b - Signal at Sheridan - $125
 c - Signal at Industrial park - $115
 d - Flasher at Hancock - $2
 e - Signal at Hancock - $115
 f - Signal at McPherson - $115
11. a - Roadway acquisition - $41
 b - Roadway construction - $68
 c - Roadway acquisition - $55
 d - Roadway construction - $243
 e - Land - $50
 f - Move building - $5
 g - Lot/landscaping - $20
12. Special paving - $1.70
13. Signage - $2
14. a - Demo and clearing - $2.5
 b - Land - $15
 c - Lot and landscaping - $20
15. Signage - $75

SUBTOTAL ITEM COST PER DISTRICT = $1,531.58
TOTAL COST - UPPER COMMERCIAL DISTRICT = $2,881.84
S-CURVES CORRIDOR

SPECIFICATIONS FOR IMPROVEMENTS

Improvement Throughout S-Curves Corridor
1. Streetlights - provide at 50' o.c. at each side of Sims
2. Sidewalk along south side of Sims
3. Curbs at planter strip along south edge of Sims Way, including gutters
4. Landscaping -
 a. Low shrubs and hydro-seeding along north edge of Sims, 10' depth
 b. Irrigated grass in planter strip
5. Driveway access - one every 100' along one side of Sims
6. Drainage - catch basins both sides
7. Underground utilities

Improvements at Specific Locations in Corridor
8. Roadway widening for a third lane for 2000 conditions, (total of 2,600 lineal feet), widen shoulders, curb at 10th Ave.
9. Develop overlook point with special paving, lighting and benches
10. Contingency, (20% of $7,610), for curbs, gutters, walkways, driveways, and drainage.

COSTS PER 100 LINEAL FEET (Costs shown in thousands)
1. Streetlights-$10
2. Sidewalks - $.99
3. Curbs at planter - $2
4. Landscaping
 a - Shrubs - $.75
 b - Irrigated grass - $.24
5. Driveways-$1.15
6. Drainage - $4.47
7. Underground Utilities - $ 11

TOTAL COST PER 100 LINEAL FEET = $29.60

SUBTOTAL COST PER CORRIDOR = $769.60

(Corridor = 2,600 lineal feet)

COSTS PER ITEM IN S-CURVE CORRIDOR (Costs shown in thousands)
8. Roadway Widening, shoulders, curbs - $390
9. Overlook Point - $2.80
10. Contingency - $1.52
11. Signage - $1
12. Signage - $10

TOTAL ITEM COST PER CORRIDOR = $405.32

TOTAL COST - S-CURVE CORRIDOR = $1,174.92
FLATS DISTRICT

SPECIFICATIONS FOR IMPROVEMENT

Improvements Throughout District
1. Curbs at planter strip along south edge of Sims, including gutter
2. Landscaping - Irrigated shrubs in planter strip
3. Sidewalks along south side of Sims
4. Streetlights along both sides of Sims, at 50' o.c.
5. Underground utilities
6. Pathway - develop gravel or bark path off of Sims Way, 5' wide
7. Driveway access - one every 100' along one side of Sims
8. Drainage with catch basin along one side

Improvements at Specific Locations in District
9. Roadway widening, from Decatur to Benedict Streets, (total of 250 lineal feet) for 2000 condition
10. Traffic signal, fully actuated, at Haines Street, for 1990 conditions
11. Roadway realignment of intersections
 a. Acquisition of Haines Street, for 1995 condition (total of 18,000 sf)
 b. Roadway construction at Haines Street, for 1995 condition (total of 350 lineal feet)
12. Special paving and benches at Crossroads
13. Infill existing poplars with new poplars; total of 30 new poplars
14. Plant willows and other marsh plants along the north side of Sims, adjacent to Kah Tai Park, 20' depth
15. Contingency, (20% of $4,375) for curbs, gutters, walkway, and drainage
16. New signage and removal of old signage
17. Business signage consolidation.

COSTS PER 100 LINEAL FEET (Costs shown in thousands)
1. Curbs at Planter - $1
2. Landscaping - Shrubs at planter - $.22
3. Sidewalk - $.99
4. Streetlights - $10
5. Underground utilities - $11
6. Pathway - $60
7. Driveways - $15
8. Drainage - $2.23

TOTAL COST PER 100 LINEAL FEET - $26.19

SUBTOTAL COST PER DISTRICT = $1,217.84
(Flats = 4,650 lineal feet)

COSTS PER ITEM IN DISTRICT (Costs shown in thousands)
9. Roadway widening - $38
10. Traffic Signal - $125
11. Realignments
 a - Acquisition at Haines Street, (18,000 SF) - $54
 b - Construction at Haines Street - $88
12. Special paving, benches-$18
13. Poplar infilling - $90
14. Willows near Kah Tai - $24
15. Contingency - $.87
16. Signage = $2
BLUFFS CORRIDOR

SPECIFICATIONS FOR IMPROVEMENTS

Improvements Throughout Bluffs Corridor
1. Curb at planter strip along south side of Sims, including gutter
2. Landscaping
 a. small deciduous street trees at 35’ o.c.
 b. irrigated ground cover around trees
3. Sidewalks along south side of Water Street
4. Streetlights along both sides of Water Street at 50’ o.c.
5. Underground utilities
6. Driveway access - one every 100” along one side of Sims
7. Drainage with catch basin along one side

Improvements at Specific Locations in Bluffs Corridor
8. Roadway widening along Water Street, (for a total of 400 lineal feet) 2000 conditions
9. Signalization, fully actuated, at Washington Street, for 2000 conditions
10. Ferry queue message sign along Sims and Water Streets, for 2010 conditions
11. Contingency, (20% of $5,250) for curbs, gutters, sidewalks
12. New signage and removal of old signage

COSTS PER 100 LINEAL FEET (Costs shown in thousands)
1. Curb at planters - $1
2.a Landscaping - $.39
2.b Ground cover - $.45
3. Sidewalks - $.99
4. Streetlight-$10
5. Underground utilities - $11
6. Driveways - $.15
7. Drainage - $2.23

TOTAL COST PER 100 LINEAL FEET = $26.21

SUBTOTAL COST PER CORRIDOR = $563.52
(Corridor = 2,150 lineal feet)

COSTS PER ITEM FOR BLUFFS CORRIDOR (Costs shown in thousands)
8. Roadway widening - $60
9. Signalization - $125
10. Ferry Queue - $50
11. Contingency - $1.05
12. Signage - $1
13. Signage - $13.50

TOTAL ITEM COST PER CORRIDOR = $317.05

TOTAL COST - BLUFFS CORRIDOR = $880.57
Current through Ordinance 3119, passed December 8, 2014.
Disclaimer: The City Clerk's Office has the official version of the Port Townsend Plans Documents. Users should contact the City Clerk's Office for ordinances passed subsequent to the ordinance cited above.

City Website: http://www.cityofpt.us/ (http://www.cityofpt.us/)
City Telephone: (360) 379-5083
Code Publishing Company (http://www.codepublishing.com/)